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Generative models

• Generative methods aim to estimate the probability distribution of a large set of data X .

• Example: X is a set of images.

• Theoretically, any X . In practice, X = {x1, x2, . . . , xN}.

• Assumed: any x ∈ X comes from a probability distribution PX and the goal is to learn it
from the data in X .

CIFAR-10

CelebA

SVHN Tiny ImageNet
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Example: Astronomical images

Images credit: ESA/Hubble & NASA
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Anomaly detection. Anomalous?
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Anomalous? Out-of-distribution

MNIST

KMNIST

CIFAR-10

CelebA

SVHN
Tiny ImageNet
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Generative methods

Generative models learn the probability distribution PX of the given data by learning to
generate new samples.

Some of the most prominent approaches are
Normalizing Flows (e.g., L. Dinh et al., 2014)

Variational Autoencoders (VAE) (e.g., Kingma & Welling, 2013)

Generative Adversarial Networks (GAN) (e.g., Goodfellow et al., 2014)

Autoregressive models (e.g., Van den Oord et al., 2016)
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Generative approaches

• Although natural images belong to high dimensional spaces, they contain geometric and
semantic structure.

• Thus, following 1,2, rather than estimating the density of PX (or Preal), which may not
exist, we can define a random variable Z with a fixed distribution Pz and pass it through a
parametric function Gθ : Z → X (typically a neural network) that directly generates samples
following a certain distribution Preal.

• PG = G#PZ , the pushforward measure of PZ through G (parametric density G#PZ
through the neural network G).

• By varying θ, we can change this distribution PGθ and make it close to (converge, if
possible) the real data distribution Preal.

1 Arjovsky, Chintala, and Bottou. Wasserstein GAN. 2017.
2 Many authors: Peyré, Genevay, Cuturi, Brenier, Dieng, Lunz, Delon, Willett, Dumoulin, Schönlieb, Berthelot,

Bengio, and many more.
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Generative adversarial approaches

First of the many GAN’s papers (2014):
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GAN Framework
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Training GAN

Original GAN objective:

min
G

max
D

V (G,D) = Ex∼Preal
[logD(x)] + Ez∼Pz [log(1−D(G(z))]

Min max iterations: iterate the "two steps" until convergence (which may not happen)

• Updating the discriminator should make it better at discriminating between real images and generated ones
(discriminator improves).

• Updating the generator makes it better at fooling the current discriminator (generator improves).

Eventually (we hope) that the generator gets so good that it is impossible for the discriminator to tell the
difference between real and generated images. Discriminator guess = 0.5.

Image credits: Santiago Pascual, 2018
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Distances and divergences between probability distributions

• Vanila-GAN training objective:

min
G

max
D

V (G,D) = Ex∼Preal [logD(x)] + Ez∼Pz [log(1−D(G(z))]

• Under optimal discriminator D∗G(x) =
preal(x)

preal(x)+pG(x)
,

min
G

V (G,D∗G) = − log(4) + 2 · δJS (Preal,PG)

(where preal, pG densities)

• Jensen-Shannon Divergence:

δJS(P1,P2) ,
1

2

[
DKL

(
P1||

P1 + P2

2

)
+DKL

(
P2||

P1 + P2

2

)]
where P1,P2 ∈ Prob(X ), space of probability distributions defined on X , X a compact metric set (e.g., the

space of images)
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Distances. Wasserstein-GAN

Wasserstein-1 Distance:

W1(P1,P2) = inf
π∈Π(P1,P2)

Ex,y∼π(‖x− y‖).

By Kantorovitch-Rubenstein duality:

W1(P1,P2) = sup
D∈D

(Ex∼P1 [D(x)]− Ey∼P2 [D(y)]) ,

where D denotes the set of 1-Lipschitz functions (i.e., 1, the set of c-convex functions
for the cost function c(x, y) =| x− y |).

In practice, the dual variable D is parametrized with some NN Dw

In these articles 2,3, the training objectives are adapted to minimize W1(Preal,PG)

1 Villani. Optimal transport: old and new. 2008
2 Arjovsky, et al. Wasserstein GAN. 2017.
3 Gulrajani, et al. Improved training of Wasserstein GANs. 2017.
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Distances. Total Variation

δ(P1,P2) = sup
A∈F
|P1(A)− P2(A)|

which represents the choice c(x, y) = 1x6=y in the optimal transport problem 1.

δ(P1,P2) = 1
2‖P1 − P2‖TV .

Kantorovitch-Rubenstein duality:

δ(P1,P2) = sup
−1≤D≤1

(Ex∼P1 [D(x)]− Ey∼P2 [D(y)])

Taking µ = P1 − P2, a signed measure, and (P,N) its Hahn decomposition
(P = {P1 > P2}), we can define the
optimal dual variable D∗ := 1P − 1N

1 Villani. Optimal transport: old and new. 2008
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Distances. Optimal dual variable

P1, P2, and the optimal D∗ = 1P − 1N

Analytic and Geometric Appr to ML C. Ballester (UPF) 15



Wasserstein Generative Adversarial Network

• Main vanilla-GANs problems: vanishing
gradients, mode collapse 1, non-continuity.

• In these articles 2,3, the training objectives
are adapted to minimize W1(Preal,PG).

• Wasserstein GAN (WGAN) uses an
approximation of the Wasserstein distance. It
is continuous everywhere and differentiable
almost everywhere.

1 Arjovsky, and Bottou. Towards principled methods for training generative adversarial networks. 2017
2 Arjovsky, et al., Wasserstein GAN. 2017.
3 Gulrajani, et al. Improved training of Wasserstein GANs. 2017.
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Wasserstein GAN

Theorem. Let Preal a fixed distribution over X . Let Z be a random variable (e.g Gaussian)
over another space Z. Let G : Z × Rd → X be a function, that will be denoted Gθ(z) with z
the first coordinate and θ the second. Let Pθ denote the distribution of Gθ(Z). Then,

1 If G is continuous in θ, so is W (Preal,Pθ).
2 If G is locally Lipschitz and satisfies the regularity assumption Ez∼p[L(θ, z)] < +∞ on

the local Lipschitz constants L(θ, z), then W (Preal,Pθ) is continuous everywhere, and
differentiable almost everywhere.

3 Statements 1-2 are false for the Jensen-Shannon divergence JS(Preal,Pθ) and all the
KLs.

The authors show that
• The assumption in 2 is satisfied for any feedforward neural network Gθ, and thus
W (Preal,Pθ) is continuous everywhere and differentiable almost everywhere.

• ∇θW (Pr, Pθ) = −Ez∼p(z)[∇θfw(gθ(z))], when both terms are well defined.

1 Arjovsky, et al. Wasserstein GAN. 2017.
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Wasserstein GAN

How to ensure to have a 1-Lipschitz discriminator?

• WGAN: Weight clipping:1 clipping the parameters of the discriminators

• Problems, including that it reduces the capacity of the discriminator.

• WGAN-GP: Gradient penalty:2 penalizing the norm of discriminator gradients with
respect to data samples during training to be less than 1.

min
G

max
D∈D

Ex̃∼Preal [D(x̃)]− Ex∼PG [D(x)]− λEx̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
where Px̃ is implicitly defined sampling uniformly along straight lines between pairs of point sampled from
the data distribution Preal and the generator distribution PG.

• The dual variable D is expected to be positive on real data samples and negative on generated
ones.

1 Arjovsky, et al. Wasserstein GAN 2017.
2 Gulrajani, et al. Improved Training of Wasserstein GANs. 2017.
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How can this be used for anomaly detection?
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GANs in anomaly detection, main strategies

• If we learned to generate normal data, only normal data can be reconstructed with
such a generator 1

• Use or create an auxiliary dataset of corrupted data (out of distribution) as negative
data for a classifier (outlier exposure) 2,3

• Corrupt the generator to provide anomalies 4

1 Schlegl, et al. AnoGAN. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide
Marker Discovery. 2017.
2 Hendrycks, et al. Deep Anomaly Detection with Outlier Exposure. 2019.
3 Meinke& Hein: Towards neural networks which provably know when they don’t know. 2020.
4 Ngo, et al. Fence GAN: Towards Better Anomaly Detection. 2019.
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Our approach

History-based anomaly detector: an adversarial approach to anomaly detection1

Joint work with Pierrick Chatillon

1 P. Chatillon and C. Ballester. History-based anomaly detector: an adversarial approach to anomaly

detection. Advances in Intelligent Systems and Computing. 2020.
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Our approach

Method’s idea: Oscillation during training provides anomalies

Figure: Generated distribution pGt oscillating around preal

Analytic and Geometric Appr to ML C. Ballester (UPF) 20



Our approach

Method’s idea: Oscillation during training provides anomalies

Figure: Generated distribution pGt oscillating around preal

Analytic and Geometric Appr to ML C. Ballester (UPF) 20



Our approach

Method’s idea: Oscillation during training provides anomalies

Figure: Generated distribution pGt oscillating around preal

Analytic and Geometric Appr to ML C. Ballester (UPF) 20



Method: ’HistoryAD’

(a) Train a W-GAN on normal data while saving states

(b) Craft an ’anomalous’ distribution

(c) Classify normal and anomalous data with the total variation framework

• We use the obtained classifier DTV as anomaly detector
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Which anomalous distribution?

Figure: Generated distribution pGt oscillating around preal

Hypothesis: supp (Preal) ⊂ supp
(
PGhist

)
.
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Anomalous distribution

PGhist is our anomalous distribution: it is a weighted average of PGt for the different
states of G during training.

PGhist ,
∫ nepoch

1

c ·Gt(PZ) · e−βtdt

To sample PGhist
:

• During W-GAN training, save the Generator’s state at regular time steps

• When training DTV , sample t along the exponential distribution, then sample z from PZ , and finally
compute Gt(z).
i.e., in practice, we approximate PGhist

by sampling data from PGt where t is a random variable of density

of probability c · 1[α,nepochs]
· e−βt

Hypothesis: supp (Preal) ⊂ supp
(
PGhist

)
.
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Training our anomaly detector DTV

DTV training objective:

sup
−1≤D≤1

(
Ex∼Preal [D(x)]− Ey∼PGhist

[D(y)]
)

For the optimal DTV , the expression above is equal to δ(Preal,PGhist), where δ is the
total variation distance:

δ(P1,P2) = sup
A measurable

|P1(A)− P2(A)|
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Optimal discriminator

Preal, PGhist , and the optimal DTV
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In a nutshell

Our method does not depend on any specific perturbation of the GAN objective,
but rather on an intrinsic property of GAN training: the oscillation of the generated
distribution around real data.

Our method can be seen as an extension of the ’early stopping in GANs’ 1

1 Gu, et al. Semi-Supervised Outlier Detection Using a Generative and Adversary Framework. 2018.
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Which initialization for DTV ? Merging discrimination information

• The mean of the different discriminator states is a good candidate

• The network with mean parameters (W0
DTV

=
∫nepoch
1 c ·WDt · e

−βtdt) is a good
approximation 1

(b) Discriminator score output during
training (from blue to red)

(c) Comparison of the average outputs
of saved discriminators during training
and the output of a discriminator with
average coefficients.

1 Wang, et al. Deep Network Interpolation for Continuous Imagery Effect Transition. 2019.
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Proposed work. Implementation details

During DTV training, we want −1 ≤ DTV ≤ 1:

7 non-linearity, bad gradient behavior, as the solution tends to −1 or 1 almost
everywhere.

4 λbounded · d(x, [−1, 1])2, smooth constraint loss term
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Experimental results

One sample from each class of MNIST.

Histogram of Discriminator output over testing set (anomalous digit: 1).
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Experiments. Latent space linear interpolation

• anomaly score of G((1− t)z1 + tz2)

Figure: History-GAN trained on MNIST
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Experiments. Gaussian Noise on normal data

Figure: Density of distribution of anomaly scores
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Results. Comparison to others on MNIST experiment

Figure: mean AUPRC for each digit of MNIST for experimental case 2, compared with other
methods (performances of methods provided by the authors of Fence-GAN)
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Results. Multiple datasets evaluation

Method trained on SVHN and evaluated on several datasets

Approximate density of anomaly score distribution

test split CIFAR-10 CelebA Tiny ImageNet
AUPRC 0.941 0.976 0.949

Table AUPRC for SVHN compared to other datasets.
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3. Image colorization using adversarial learning and semantic information

Joint work with Patricia Vitoria and Lara Raad

1 P. Vitoria, L. Raad and C. Ballester. ChromaGAN: Adversarial Picture Colorization with Semantic

Class Distribution. WACV. 2020.
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Image and video colorization

Photograph: BBC/Wingnut Films/IWM
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Problem statement

L ∈ RH×W×1
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Problem statement

L ∈ RH×W×1 (a, b) ∈ RH×W×2 (L, a, b) ∈ RH×W×3
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Image colorization

Scribble-based

Exemplar-based

Automatic methods
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Image colorization

Scribble-based

Exemplar-based

Automatic methods
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Automatic methods - deep learning

Semantic information
- Iizuka, Simo-Serra, and Ishikawaizuka, 2016 [ISSI16]

Color distribution
- Zhang, Isola, and Efros, 2016 [ZIE16]
- Larsson, Maire, and Shakhnarovich, 2016 [LMS16]

Adversarial training
- Isola, Zhu, Zhou, and Efros, 2017 [IZZE17]

Instance colorization
- Su, Chu, and Huang, 2020 [SCH20]
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Our approach: ChromaGAN

• Given a grayscale input image L, we learn a mapping G : L −→ (a, b) such that I = (L, a, b) is a
plausible color image and a and b are chrominance channel images in the CIE Lab color space. A
plausible color image is one having geometric, perceptual and semantic photo-realism.

• the mapping (generator) Gθ is learnt by means of an adversarial learning strategy.

• In parallel, a discriminator Dw evaluates how realistic is the proposed colorization I = (L, a, b) of L.

• Our generator Gθ will not only learn to generate color but also a class distribution vector, denoted by
y ∈ Rm, where m is the fixed number of classes. This provides information about the probability
distribution of the semantic content and objects present in the image.

Gθ = (G1
θ1
,G2
θ2

), where θ = (θ1, θ2) stand for all the generator parameters, G1
θ1

: L −→ (a, b), and

G2
θ2

: L −→ y.
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Our approach: ChromaGAN
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Figure: ChromaGAN network overview: Two outputs, Gθ = (G1θ1 ,G
2
θ2

), where θ = (θ1, θ2) stand for all the

generator parameters, G1θ1 : L −→ (a, b), and G2θ2 : L −→ y.

Vitoria, Raad, and Ballester, 2020 [VRB20]
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Cost function

The network is trained solving the min-max problem

min
Gθ

max
Dw∈D

L(Gθ, Dw),

where the loss function is defined as

L(Gθ, Dw) = Le(G1
θ1) + λpLp(G1

θ1 , Dw) + λsLs(G2
θ2).

where

Reconstruction loss: Le(G1
θ1
) = E(L,ar,br)∼Pr

[
‖G1

θ1
(L)− (ar, br))‖22

]
Class distribution loss: Ls(G2

θ2
) = EL∼Prg

[
KL
(
yv ‖ G2

θ2
(L)
)]

WGAN-GP loss: Lp(G1
θ1
, Dw) =

EIr∼Pr [Dw(Ir)]− E(a,b)∼PG1
θ1

[Dw(L, a, b)]− EÎ∼P
Î
[(‖∇ÎDw(Î)‖2 − 1)2]
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Ablation study

input ChromaGAN without without
distribution term WGAN term
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Qualitative results

Code: https://github.com/pvitoria/ChromaGAN
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Perceptual evaluation
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Perceptual evaluation

Method Naturalness PSNR (dB)
Real images 87.1
ChromaGAN [VRB20] 76.9 24.98
without class distr 70.9 25.04
without WGAN 61.4 25.57
Iizuka et al. [ISSI16] 53.9 23.69
Larsson et al. [LMS16] 53.6 24.93
Zhang et al. [ZIE16] 52.2 22.04
Isola et al. [IZZE17] 27.6 21.57

Table: Semantic information: [ISSI16], color distribution: [LMS16], [ZIE16], adversarial
training: [IZZE17].
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Qualitative comparison

GT ChromaGAN [ISSI16] [LMS16] [ZIE16] [SCH20]

Figure: Results on Imagenet. Semantic information: [ISSI16], color
distribution: [LMS16], [ZIE16], instance colorization: [SCH20].

Analytic and Geometric Appr to ML C. Ballester (UPF) 47



Qualitative comparison

GT ChromaGAN [ISSI16] [LMS16] [ZIE16] [SCH20]

Figure: Results on random images. Semantic information: [ISSI16], color
distribution: [LMS16], [ZIE16], instance colorization: [SCH20].
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Failure cases

Color Bleeding

Desatured

Results

Color

Inconsistency
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Old black and white photos
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4. Image inpainting through an adversarial strategy

Joint work with Patricia Vitoria and Joan Sintes

1 P. Vitoria, J. Sintes and C. Ballester. Semantic Image Inpainting Through Improved Wasserstein

Generative Adversarial Networks. 2019.
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Image inpainting

• Image inpainting is also known as image
completion, disocclusion or object removal. It aims
to obtain a visually plausible completion of the
image in a region in which data is missing due to
damage or occlusion.

• Problem: When missing regions are large and

moreover the missing information is unique in the

sense that the information and redundancy

available in the image is not useful to guide the

completion, the task becomes even more

challenging.
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Semantic image inpainting

Method, based on an self-supervised adversarial strategy followed by an energy-based
completion algorithm:

• 1st Step: given a dataset of (non-corrupted) images, the data latent space is learned
via an improved version of the Wasserstein GAN

min
G

max
D∈D

Ex̃∼Preal [D(x̃)]− Ex∼PG [D(x)]− λEx̃∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
• 2nd Step: given an incomplete image y and the converged generative adversarial G and
D, a minimization procedure is performed to infer the missing content of the incomplete
image by conditioning on the known regions

ẑ = argmin
z
{Lc(z|y,M) + αLp(z)}

where Lc is the contextual loss defined as

Lc(z|y,M) = ‖W (G(z)− y)‖+ β‖W (∇G(z)−∇y)‖

with α, β > 0, W a weight mask, W (i) =


∑
j∈Ni

(1−M(j))

|Ni|
if i is known

0 if i is unknown
and Lp(z) = −D(G(z)) is the prior loss that favours realistic images, similar to the samples that
are used to train the generative model.
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1st Step: Train our generative model

Architecture (based on the one of WGAN-GP plus some improvements)
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2nd Step: Perform inpainting using an optimization method

Given a GAN model trained on real
images, we iteratively update z to find
the closest mapping on the latent
image manifold, based on the
designed loss function.

Manifold traversing when iteratively update z using
back-propagation. z(0) is random initialized; z(k)

denotes the result in k-th iteration; and ẑ denotes the
final solution before the Poisson editing step is applied.
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Optional:
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Experimental results

Masked Ours Masked Ours Masked Ours
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Experimental results

Original Masked Ours Yeh 2017 Masked Ours Yeh 2017
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Street View House Numbers (SVHN)
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Quantitative results
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Thank you!
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