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Generative models
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Generative models
e Generative methods aim to estimate the probability distribution of a large set of data X.
e Example: X is a set of images.

e Theoretically, any X. In practice, X = {z1,z2,...,zN}.

e Assumed: any z € X’ comes from a probability distribution Py and the goal is to learn it
from the data in X.
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Example: Astronomical images

Images credit: ESA/Hubble & NASA

Analytic and Geometric Appr to ML C. Ballester (UPF) 4



Example: Astronomical images

Images credit: ESA/Hubble & NASA
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Anomaly detection. Anomalous?
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Anomalous? Out-of-distribution
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Generative methods
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Generative methods

Generative models learn the probability distribution Py of the given data by learning to
generate new samples.

Some of the most prominent approaches are
@ Normalizing Flows (e.g., L. Dinh et al., 2014)
@ Variational Autoencoders (VAE) (e.g., Kingma & Welling, 2013)
@ Generative Adversarial Networks (GAN) (e.g., Goodfellow et al., 2014)
@ Autoregressive models (e.g., Van den Oord et al., 2016)
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Generative approaches

e Although natural images belong to high dimensional spaces, they contain geometric and
semantic structure.

e Thus, following 1:2, rather than estimating the density of Py (or Pyear), which may not
exist, we can define a random variable Z with a fixed distribution P and pass it through a
parametric function Gy : Z — X (typically a neural network) that directly generates samples
following a certain distribution P,¢,.

® Pg = G4Pz, the pushforward measure of P, through G (parametric density G4Pz
through the neural network G).

o By varying 6, we can change this distribution PG, and make it close to (converge, if
possible) the real data distribution Pey).

1 Arjovsky, Chintala, and Bottou. Wasserstein GAN. 2017.
2 Many authors: Peyré, Genevay, Cuturi, Brenier, Dieng, Lunz, Delon, Willett, Dumoulin, Schénlieb, Berthelot,

Bengio, and many more.
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Generative adversarial approaches

First of the many GAN's papers (2014):

Generative Adversarial Nets

Ian J. Goodfellow; Jean Pouget-Abadie] Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair} Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 317

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for (7 is to maximize the probability of 1) making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
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GAN Framework

Training set
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Training GAN

Original GAN objective:
mGin max V(G, D) = Eg~p,_, [log D(z)] + Ezwp, [log(l — D(G(2))]

Min max iterations: iterate the "two steps" until convergence (which may not happen)

e Updating the discriminator should make it better at discriminating between real images and generated ones
(discriminator improves).

e Updating the generator makes it better at fooling the current discriminator (generator improves).

Eventually (we hope) that the generator gets so good that it is impossible for the discriminator to tell the
difference between real and generated images. Discriminator guess = 0.5.

7/ NN

Image credits: Santiago Pascual, 2018
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Distances and divergences between probability distributions

e Vanila-GAN training objective:
ngn max V(G,D) = Ez~p,_,[log D(x)] + Ezp, [log(1l — D(G(2))]

Preal (Z)

o Under optimal discriminator D¢ (x) = oG e @)

mci‘n V(G‘7 DZ;) = — 10g(4) + 2435 (Preah PG)

(where p___ |, PG densities)

rea

e Jensen-Shannon Divergence:

1 P+ P Py +P
5JS(P1,P2)é§ [DKL (P1|| Lt 2)+DKL (PQH ! 2)}

where P, Pa € Prob(X), space of probability distributions defined on X, X a compact metric set (e.g., the

space of images)
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Distances. Wasserstein-GAN

Wasserstein-1 Distance:

WiE1P) =yl Eram =)

By Kantorovitch-Rubenstein duality:

Wi (P1,P2) = sup (Eznpy [D(2)] — Eynry [D(Y)]),

where D denotes the set of 1-Lipschitz functions (i.e., 1 the set of c-convex functions
for the cost function c(z,y) =| z —y |).

In practice, the dual variable D is parametrized with some NN D,,

In these articles >3, the training objectives are adapted to minimize W1 (Pyeal, Pc)

1 Villani. Optimal transport: old and new. 2008
Arjovsky, et al. Wasserstein GAN. 2017.

3 Gulrajani, et al. Improved training of Wasserstein GANs. 2017.
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Distances. Total Variation

6(P1,P2) = sup |[P1(A) — P2 (A)
AeF
which represents the choice c(x,y) = L5, in the optimal transport problem L
5(P1,P2) = £|IP1 — Pallrv.

Kantorovitch-Rubenstein duality:

6(P1,P2) = sup (BEznpr, [D(2)] — Eynry [D(y)])

—1<D<1

Taking = P1 — P2, a signed measure, and (P, N) its Hahn decomposition
(P = {P1 > P2}), we can define the
optimal dual variable D* :=1p — 1 x

1 Villani. Optimal transport: old and new. 2008
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Distances. Optimal dual variable

Pi, P2, and the optimal D" =1, — 1y
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Wasserstein Generative Adversarial Network

e Main vanilla-GANs problems: vanishing [— Oensity of real
X 1 . : Density of fake
gradients, mode collapse *, non-continuity. 08 AR DR i
WGAN Critic

o In these articles 2:3, the training objectives
are adapted to minimize W1 (P e, Pg).

e Wasserstein GAN (WGAN) uses an
approximation of the Wasserstein distance. It
is continuous everywhere and differentiable
almost everywhere.

-3 -6 7 =7 ] 2 ] o

1 Arjovsky, and Bottou. Towards principled methods for training generative adversarial networks. 2017
2 Arjovsky, et al., Wasserstein GAN. 2017.

3 Gulrajani, et al. Improved training of Wasserstein GANs. 2017.
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Wasserstein GAN

Theorem. Let P, a fixed distribution over X. Let Z be a random variable (e.g Gaussian)
over another space Z. Let G : Z x R? — X be a function, that will be denoted Gy (2) with z
the first coordinate and 6 the second. Let Py denote the distribution of Gy(Z). Then,

@ If G is continuous in 8, so is W (P,eal, Po).

@ If G is locally Lipschitz and satisfies the regularity assumption E;~p[L(6, 2)] < 400 on
the local Lipschitz constants L(6, z), then W (P,ca1, Pg) is continuous everywhere, and
differentiable almost everywhere.

© Statements 1-2 are false for the Jensen-Shannon divergence JS(Pyeal, Pg) and all the
KLs.

The authors show that

e The assumption in 2 is satisfied for any feedforward neural network Gy, and thus
W (Preal; Po) is continuous everywhere and differentiable almost everywhere.

o VoW (Pr, Ps) = —E.np(z)[Vafw(ga(2))], when both terms are well defined.

1 Arjovsky, et al. Wasserstein GAN. 2017.
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Wasserstein GAN

How to ensure to have a 1-Lipschitz discriminator?

o WGAN: Weight clipping:! clipping the parameters of the discriminators

e Problems, including that it reduces the capacity of the discriminator.

o WGAN-GP: Gradient penalty:2 penalizing the norm of discriminator gradients with
respect to data samples during training to be less than 1.

min 1ax Ezvp, ., (D)) — Evopg [D(@)] — AEsnp, [(17D()]2 — 1)?]

where Pz is implicitly defined sampling uniformly along straight lines between pairs of point sampled from

the data distribution P _ | and the generator distribution Pg.

e The dual variable D is expected to be positive on real data samples and negative on generated
ones.

1 Arjovsky, et al. Wasserstein GAN 2017.
2 Gulrajani, et al. Improved Training of Wasserstein GANs. 2017.
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How can this be used for anomaly detection?
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GANSs in anomaly detection, main strategies

o If we learned to generate normal data, only normal data can be reconstructed with
such a generator *

e Use or create an auxiliary dataset of corrupted data (out of distribution) as negative
data for a classifier (outlier exposure) 23

o Corrupt the generator to provide anomalies *

1 Schlegl, et al. AnoGAN. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide
Marker Discovery. 2017.

2 Hendrycks, et al. Deep Anomaly Detection with Outlier Exposure. 2019.

3 Meinke& Hein: Towards neural networks which provably know when they don't know. 2020.

4 Ngo, et al. Fence GAN: Towards Better Anomaly Detection. 2019.
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Our approach

History-based anomaly detector: an adversarial approach to anomaly detection®

Joint work with Pierrick Chatillon

1 P. Chatillon and C. Ballester. History-based anomaly detector: an adversarial approach to anomaly

detection. Advances in Intelligent Systems and Computing. 2020.
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Our approach

Method’s idea: Oscillation during training provides anomalies
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Figure: Generated distribution pg, oscillating around py,)
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Our approach
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Our approach

Method’s idea: Oscillation during training provides anomalies
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Method: 'HistoryAD'

(a) Train a W-GAN on normal data while saving states
(b) Craft an 'anomalous’ distribution
(c) Classify normal and anomalous data with the total variation framework

e We use the obtained classifier Dy as anomaly detector

training time Pz

| D>

G, PG, Piata i)
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Which anomalous distribution?
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Figure: Generated distribution pg, oscillating around pye,)

Hypothesis: supp (Prea) C supp (Pay,,) -
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Anomalous distribution

Pg,;.. is our anomalous distribution: it is a weighted average of Pg, for the different
states of G during training.

Mepoch
PGy é/ eGPy et
1

To sample PGh' e
ist

o During W-GAN training, save the Generator's state at regular time steps
o When training D7y, sample t along the exponential distribution, then sample z from Pz, and finally
compute G¢(z).
i.e., in practice, we approximate PGh' . by sampling data from P, where t is a random variable of density
IS

of probability ¢ - ]1[ LBt

"‘*"epochs]

Hypothesis: supp (Preal) C supp (PGH“) .
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Training our anomaly detector D7y,

Drvy training objective:

3 (Eerr D) ~ By, IDW)])

For the optimal Dty , the expression above is equal to §(Preal, PGM"), where § is the
total variation distance:

5(P1, PQ) = sup |P1(A) — PQ(A)|

A measurable
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Optimal discriminator
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In a nutshell

Our method does not depend on any specific perturbation of the GAN objective,
but rather on an intrinsic property of GAN training: the oscillation of the generated
distribution around real data.

Our method can be seen as an extension of the 'early stopping in GANs' !

1 Gu, et al. Semi-Supervised Outlier Detection Using a Generative and Adversary Framework. 2018.
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Which initialization for D7y 7 Merging discrimination information

e The mean of the different discriminator states is a good candidate

e The network with mean parameters W = Jirereeh ¢ Wp, - e Ptdt) is a good

approximation *

(b) Discriminator score output during

training (from blue to red)

1 Wang, et al. Deep Network Interpol

for C

Analytic and Geometric Appr to ML

3 2 1 o 1 2
(c) Comparison of the average outputs
of saved discriminators during training
and the output of a discriminator with
average coefficients.

Imagery Effect Transition. 2019.

C. Ballester (UPF)
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Proposed work. Implementation details

During Dry training, we want —1 < Dpy < 1:

X non-linearity, bad gradient behavior, as the solution tends to —1 or 1 almost
everywhere.

v Xpounded - d(x, [—1,1])?, smooth constraint loss term

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Experimental results

O/l 3YE5 L7,

One sample from each class of MNIST.

600 4 Normal data

Anomalous data
500 4
400 A
300 4

200 4

100 4

PO ¥ T T, . : .

-1.5 -1.0 -0.5 0.0 0.5 10 15

Histogram of Discriminator output over testing set (anomalous digit: 1).
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Experiments. Latent space linear interpolation

e anomaly score of G((1 — t)z1 + tz2)

Anomaly score

10 R e R e e e e e m e m e

0.5 7

0.0 1

_0.5 -

-101 ==———————mee == ==o .
0.0 0.2 0.4 0.6 0.8 1.0
Interpolation value

Corresponding interpolated images

OOOOOOUHFH>D

Figure: History-GAN trained on MNIST
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Experiments. Latent space linear interpolation

e anomaly score of G((1 — t)z1 + tz2)
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Figure: History-GAN trained on MNIST
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Experiments. Gaussian Noise on normal data

Normal data with different addiie gasssian nose

o=0
0=0.01
0=0.032
0=0.1
0=0.316
o=1.0

E Tia ey ) an [

Figure: Density of distribution of anomaly scores
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Results. Comparison to others on MNIST experiment

2 +  FGAN[20]
«  Ganomaly [1]
«  EfficlentGAN FM (28]
+  EficientGAN sigma [28]
= AnaGAN [23]
VAE (2]
No trasning

Experimental case 1
| Experimentsl case 2

Figure: mean AUPRC for each digit of MNIST for experimental case 2, compared with other
methods (performances of methods provided by the authors of Fence-GAN)
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Results. Multiple datasets evaluation

Method trained on SVHN and evaluated on several datasets

CIFAR-10 test

CelebA test

SVHN test

tiny ImageNet 200 test

Approximate density of anomaly score distribution

test split

CIFAR-10

CelebA

Tiny ImageNet

AUPRC

0.941

0.976

0.949

Table AUPRC for SVHN compared to other datasets.
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3. Image colorization using adversarial learning and semantic information

Joint work with Patricia Vitoria and Lara Raad

1 P. Vitoria, L. Raad and C. Ballester.
Class Distribution. WACV. 2020.

Analytic and Geometric Appr to ML

ChromaGAN: Adversarial Picture Colorization with Semantic

C. Ballester (UPF)
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Image and video colorization

Photograph: BBC/Wingnut Films/IWM
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Problem statement
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Problem statement

L c RHXWXl

Analytic and Geometric Appr to ML

(a7 b) c RHXW><2

C. Ballester (UPF)

Ik,

L,a,b) € RFTXWx3
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Image colorization

@ Scribble-based
@ Exemplar-based

@ Automatic methods

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Image colorization

@ Scribble-based
o Exemplar-based

@ Automatic methods

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Automatic methods - deep learning

@ Semantic information
- lizuka, Simo-Serra, and Ishikawaizuka, 2016 [ISSI16]
@ Color distribution

- Zhang, Isola, and Efros, 2016 [ZIE16]
- Larsson, Maire, and Shakhnarovich, 2016 [LMS16]

@ Adversarial training

- lIsola, Zhu, Zhou, and Efros, 2017 [IZZE17]
@ Instance colorization

- Su, Chu, and Huang, 2020 [SCH20]
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Our approach: ChromaGAN

e Given a grayscale input image L, we learn a mapping G : L — (a, b) such that I = (L, a,b) is a
plausible color image and a and b are chrominance channel images in the CIE Lab color space. A
plausible color image is one having geometric, perceptual and semantic photo-realism.

e the mapping (generator) Gy is learnt by means of an adversarial learning strategy.
e In parallel, a discriminator D,, evaluates how realistic is the proposed colorization I = (L, a,b) of L.

e Our generator Gy will not only learn to generate color but also a class distribution vector, denoted by
y € R™, where m is the fixed number of classes. This provides information about the probability
distribution of the semantic content and objects present in the image.

Go = (Qél s ggz), where 6 = (01, 02) stand for all the generator parameters, g;l : L — (a,b), and
932 L —y.

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Our approach: ChromaGAN

Figure: ChromaGAN network overview: Two outputs, Gg = (gél s 932 ), where 6 = (61, 62) stand for all the

generator parameters, g;l : L —» (a,b), and gg2 L — y.

Vitoria, Raad, and Ballester, 2020 [VRB20]
C. Ballester (UPF)
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Cost function

The network is trained solving the min-max problem

min max £L(Gg, Dw),
Gg Dw€D

where the loss function is defined as

L(Go, Dw) = Le(G5,) + AoLp(Gs,» Duw) + AsLs(G3, ).

where
@ Reconstruction loss: Le(Gg,) = E(L,a,,0,)~p, [1Gs, (L) — (ar,b,))[3]

@ Class distribution loss: .cs(ggz) =Ep~p,, [KL (yv | g32 (L))}

@ WGAN-GP loss: [,p(gél,Dw) =
Ernpr [Du(lr)] = Blapypg, [Dw(lyab)] = Erop [(IV:Dw(ll2 — 1)%]
1

Analytic and Geometric Appr to ML C. Ballester (UPF)

42



Ablation study

input ChromaGAN without

Analytic and Geometric Appr to ML

distribution term

C. Ballester (UPF)

without
WGAN term
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Qualitative results

Code: https://github.com/pvitoria/ChromaGAN

Analytic and Geometric Appr to ML

C. Ballester (UPF)
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Perceptual evaluation

Colorization Tests

|article || demo | | archive |
Please cile the reference article if you publish resulls obtained with this online demo.

Does this image has a natural colorization?

Try not to spend too much time looking at the details.

Five seconds per image should be enough.

‘You can use keys y and n or click the 'Yes' and 'No’ buttons.

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Perceptual evaluation

| Method | Naturalness | PSNR (dB) |

Real images 87.1

ChromaGAN [VRB20] 76.9 24.98
without class distr 70.9 25.04
without WGAN 61.4 25.57
lizuka et al. [ISSI16] 53.9 23.69
Larsson et al. [LMS16] 53.6 24.93
Zhang et al. [ZIE16] 52.2 22.04
Isola et al. [IZZE17] 27.6 21.57

Table: Semantic information: [ISSI16], color distribution: [LMS16], [ZIE16], adversarial
training: [IZZE17].
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Qualitative comparison

GT ChromaGAN [1ssl16] [LMS16] [ZIE16]

Figure: Results on Imagenet. Semantic information: [ISSI16], color
distribution: [LMS16], [ZIE16], instance colorization: [SCH20].

Analytic and Geometric Appr to ML C. Ballester (UPF)

[SCH20]
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Qualitative comparison

ChromaGAN [I1ssi16] [LMS16] [zIE16]

Figure: Results on random images. Semantic information: [ISSI16], color
distribution: [LMS16], [ZIE16], instance colorization: [SCH20].

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Failure cases

Color Bleeding

Desatured

Results

Color

Inconsistency
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Old black and white photos
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4. Image inpainting through an adversarial strategy

Joint work with Patricia Vitoria and Joan Sintes

1 P. Vitoria, J. Sintes and C. Ballester. Semantic Image Inpainting Through Improved Wasserstein

Generative Adversarial Networks. 2019.

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Image inpainting

e Image inpainting is also known as image
completion, disocclusion or object removal. It aims
to obtain a visually plausible completion of the
image in a region in which data is missing due to
damage or occlusion.

e Problem: When missing regions are large and
moreover the missing information is unique in the
sense that the information and redundancy
available in the image is not useful to guide the
completion, the task becomes even more

challenging.

Analytic and Geometric Appr to ML C. Ballester (UPF)
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Semantic image inpainting

Method, based on an self-supervised adversarial strategy followed by an energy-based
completion algorithm:

e 1st Step: given a dataset of (non-corrupted) images, the data latent space is learned
via an improved version of the Wasserstein GAN
min max Ezwp,.,, [D(@)] — Esnpg [D(@)] = AEsnp, [(IV2D(@)]2 — 1)%]
G DeD
e 2nd Step: given an incomplete image y and the converged generative adversarial G and

D, a minimization procedure is performed to infer the missing content of the incomplete
image by conditioning on the known regions

2 =arg mzin{[lc(2|y, M)+ alp(2)}

where L. is the contextual loss defined as
Le(zly, M) = [|[W(G(2) — y)ll + BIW(VG(2) — Vy)|l

S a-M@G) ...
——F = if i is known
with a;, 8 > 0, W a weight mask, W (i) = jen; [ N:|
0 if ¢ is unknown
and L,(z) = —D(G(z)) is the prior loss that favours realistic images, similar to the samples that

are used to train the generative model.
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1st Step: Train our generative model

Architecture (based on the one of WGAN-GP plus some improvements)

Generator Discriminator

“. = - ‘ ‘
s Residual  Residual

block UP  block UP  block UP

block block block
Down Down quﬂ
| ‘ Residual Block - UP 7 Residual Block - DOWN

Analytic and Geometric Appr to ML C. Ballester (UPF)

).
id: idual Residual |

pen

54



2nd Step: Perform inpainting using an optimization method

c® Input G(z“") G(z") G(2) Overlay
Given a GAN model trained on real Manifold traversing when iteratively update z using
images, we iteratively update z to find  back-propagation. z(?) is random initialized; z(¥)
the closest mapping on the latent denotes the result in k-th iteration; and 2 denotes the
image manifold, based on the final solution before the Poisson editing step is applied.

designed loss function.
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Optional:

J

Result from
the Model

Analytic and Geometric Appr to ML

Overlapping
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Experimental results

=

Masked Ours
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Experimental results

Masked Ours Yeh 2017 Masked Ours Yeh 2017

Original
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Quantitative results

[Loss formulution
(Yeh etal.,

Analytic and Geometric Appr to ML

CelebA dataset SVHN datuset ]
MSE PSNR S5IM MSE PSNR SSIM |
017 BT2E672 187215 09071 | 15358693 162673 04935 |
(Yeh et al., 2017) adding gradient loss with = (L1, f =09 and = 1.0 | 832.9295 189247 09087 | 15668592 16,1805 04775
(Yeh et al, 2017) adding gradient loss witha =05, f=05andn = 1.0 | 8629393 187710 09117 159950 04931
(Yeh et al., 2017) adding gradient loss witha = 0.1, f = 09 andn = 0.5 | 794.3374 191308 09130 16,4438 0.5041
(Yeh et al., 2017) adding gradient loss witha = 0.5, f =05 and = 0.5 | 8769104 187013 09063 | I587.2998 16,1242
Our proposed loss with o = 0.1, f = 0.9 and n = 1.0 55,3476 188094 09158 | 6310078 20,1305
Our proposed loss with o = 0.5, i = 0.5 and n = 1.0 785.2562 191807 09196 | 7438718 19,4158
Our proposed loss with a = 0.1, i = 0.9 and 5 R624890 187733 09135 | 6229391 201863  0.8005
Our proposed loss with a = 0.5, f=05andn .5 8339951 189192 09146 | TO3.B026  19.6563 08000
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