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Two Player Games and PDEs
There is a long history connecting two player games and PDEs

Differential Games (Isaacs Equation)

Kohn-Serfaty game for curvature motion [Kohn & Serfaty, 2006]

I Fully nonlinear parabolic equations [Kohn & Serfaty, 2010]

Stochastic Tug-of-War games for the p-Laplacian (inlcuding p =∞)

I [Peres & Scheffield, 2008]
I [Peres, Schramm, Scheffield, Wilson, 2009]
I [Manfredi, Parviainen, Rossi, 2010, 2012]
I [Armstrong & Smart, 2012]
I [Lewicka, Manfredi, 2014, 2017]
I Applications to machine learning [Calder 2018] [Slepčev & Thorpe,

2019]

Convex Hull Peeling and the affine flow [Calder & Smart, 2020]

Prediction from expert advice [Kohn & Drenska, 2020] [Drenska & Calder, 2020]

I Generalization of the Kohn-Serfaty game
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Kohn-Serfaty Game
The game is played in a convex domain Ω ⊂ R2 starting at x0 ∈ Ω and involves a small
parameter ε > 0. The rules of the game are

1 Paul chooses a direction vector vk ∈ S1.

2 Carol moves the token from xk to xk+1 = x0 ±
√

2εvk .

Paul wants to escape Ω and Carol wants to obstruct.

xk
xk +

√
2εvkxk −

√
2εvk

xk +
√

2εvk +
√

2εvk+1

xk +
√

2εvk −
√

2εvk+1
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Kohn-Serfaty Game

Let us define
uε(x0) = ε2(Number of steps for Paul to escape Ω)

given that both players play optimally and the game starts at x0. The value function u
satisfies the dynamic programming principle

uε(x) = ε2 + min
|v|=1

max
b=±1

uε(x +
√

2εbv).

We assume uε ≈ u where u is smooth and Taylor expand to obtain

u(x) ≈ ε2 + min
|v|=1

max
b=±1

{
u(x) +

√
2εb∇u(x)Tv + ε2vT∇2u(x)v

}
.

Paul should choose v = ∇⊥u/|∇u|, where ∇⊥u = (−ux2 , ux1), yielding

0 ≈ 1 +
(∇⊥u)T

|∇u| ∇
2u
∇⊥u
|∇u| = 1 + |∇u|div

(
∇u
|∇u|

)
.
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Kohn-Serfaty Game
Kohn & Serfaty showed that uε → u as ε→ 0 where u is the viscosity solution of

(1)

−|∇u|div

(
∇u
|∇u|

)
= 1 in Ω

u = 0 on ∂Ω.

This is the level-set equation for motion by mean curvature of the level sets of u.

The number of steps for Paul to escape concides in the limit as ε→ 0 with the
arrival time for the boundary evolving under curvature motion.

Paul’s asymptotically optimal strategy to choose v tangent to level sets of u.
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Prediction with expert advice

One of the oldest online machine learning problems [Cover, 1966].

We are given a stream of data b1, b2, b3, . . . .

A pool of “experts” makes predictions about future values bk .

The player must use the expert advice to make their own prediction.

The player’s performance is measured by regret

Regret to expert i := Expert i ’s performance− Player’s performance.

Calder (UofM) PDEs and prediction LMS/ICMS, July 28 9 / 41



Prediction with expert advice

Key feature: Worst case analysis.

No modeling assumptions made on the data stream b1, b2, b3, . . . .

The data stream (environment) is assumed to be controlled by an adversary.

Yields two player zero-sum games with minimax optimal strategies.

Applications: Financial math, weather prediction, click prediction,. . .
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Example: Weather prediction

Goal: Each morning predict whether it will rain or not.

Possible Experts:

1 The Weather Network

2 AccuWeather

3 Weather Underground

4 Your own deep neural network

5 It will rain today if it rained yesterday

6 It always rains

7 It never rains

8 Toss a coin

9 Red sky in the morning
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Previous work

2 constant experts:

Optimal strategies [Cover, 1966]

Multiplicative weights algorithm (MWA):

[Littlestone and Warmuth, 1994, Vovk, 1990]

Also called weighted majority algorithm.

Provably optimal as n,T →∞ [Cesa-Bianchi and Lugosi, 2006].

For finite number of experts n, MWA is not optimal.

Optimal strategies:

n = 2, 3 experts [Gravin et al., 2016, Abbasi et al., 2017].

n = 4 experts [Bayraktar et al., 2019]

Connection to PDEs for n ≥ 2 experts

I [Zhu, 2014, Drenska, 2017, Drenska and Kohn, 2019b]
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Problem setup: History dependent experts

Daily stock price movements b1, b2, b3, . . . , bk , . . . with bk ∈ B := {−1, 1}.

We have n experts predicting bi based on d-days of history

m i := (bi−d , bi−d+1, . . . , bi−1) ∈ Bd .

The expert predictions are publicly available algorithms

q1, . . . , qn : Bd → [−1, 1],

and we write q = (q1, . . . , qn).

Rules of the game: For i = 1 up to N

1 The investor views q(mi) and decides on an investment fi ∈ [−1, 1].

2 The market chooses bi ∈ B.

3 Investor accumulates regret qj (m
i)bi − fibi with respect to expert j .
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i)bi − fibi with respect to expert j .
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Problem setup: History dependent experts

After N steps of the game, the accumulated regret is

RN :=

N∑
i=1

bi(q(m i)− fi1), 1 = (1, . . . , 1).

Objective: Given a payoff function g : Rn → R

I Market’s goal is to maximize g(RN ).

I Investor’s goal is to minimize g(RN ).

Common choice for payoff is

g(x) = max{x1, x2, . . . , xn},

where xi = regret with respect to expert i .

Drenska, N., and Kohn R.V. A PDE approach to the prediction of a binary sequence
with advice from two history-dependent experts. arXiv preprint:2007.12732 (2020).
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Problem setup: History dependent experts

Notation: For m = (m1, . . . ,md) ∈ Bd and b ∈ B we denote

m|b := (m2,m3, . . . ,md , b) ∈ Bd .

The history transition is m i+1 = m i |bi .

Definition (Value function)

Let g : Rn → R. Given N ∈ N, m ∈ Bd , and 1 ≤ ` ≤ N , the value function VN (x , `;m)
is defined by VN (x , `;m) = g(x) for ` = N , and

(2) VN (x , `;m) = min
|f`|≤1

max
b`=±1

· · · min
|fN−1|≤1

max
bN−1=±1

g

(
x +

N−1∑
i=`

bi(q(m i)− fi1)

)

for 1 ≤ ` ≤ N − 1, where m` = m and m i+1 = m i |bi for i = `, . . . ,N − 1.
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De Bruijn graph d = 1
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Assumptions

For T > 0,N ∈ N, define ε > 0 by T = ε2N and set

uN (x , t ;m) :=
1√
N

VN (
√
Nx , dNte;m),

We assume g ∈ C 4(Rn) with uniformly bounded derivatives of order up to 4 over
Rn , there exists θ > 0 such that

(3) ∇g(x)T1 ≥ θ for all x ∈ Rn ,

and that g is positively 1-homogeneous, that is

(4) g(sx) = sg(x) for all x ∈ Rn , s > 0.

We also assume the expert strategies q = (q1, . . . , qn) satisfy

(5) q : Bd → [−µ, µ]n for some µ ∈ (0, 1).
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Our main result

Let u be the viscosity solution of

(6)


ut +

1

2d+1

∑
m∈Bd

η(m)T∇2u η(m) = 0, in Rn × (0, 1)

u = g , on Rn × {t = 1},

where

(7) η(m) = q(m)− ∇u
Tq(m)

∇uT1
1.

Theorem (Drenska & Calder, 2020)

There exists C1,C2 > 0, depending on u, n and θ, such that

(8) |uN (x , t ;m)− u(x , t)| ≤ C1d(1− t + ε)ε

holds for all N ≥ C2d
2/µ2, (x , t) ∈ Rn × [0, 1] and m ∈ Bd , where ε = N−1/2.
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Optimal strategies
An O(ε) asymptotically optimal investor strategy is

f ∗ =
∇uTq

∇uT1
+
ε

2

(
H(m+)−H(m−)

∇uT1

)
,

where H satisfies the graph Poisson equation

∆BdH = h − 1

2d

∑
m∈Bd

h(m)

where

∆BdH(m) = H(m)− 1

2
H(m+)− 1

2
H(m−),

and

h(m) =
1

2
η(m)T∇2u η(m) and η(m) = q(m)− ∇u

Tq(m)

∇uT1
1.

An asymptotically optimal market strategy is

b∗ = sign(f ∗ − f ),
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Underlying linear heat equation

y1

y2

x1

x2

y2 = h(y1, t ;λ)

{u(x , t) = λ}

Change coordinates so yn = x1 + · · ·+ xn , yi = xi − xn and define h by

v(y1, . . . , yn−1, h(y1, . . . , yn−1, t ;λ), t) = λ,

where v(y , t) = u(x , t).

We find h satisfies a linear heat equation

(9) ht +
1

2d+1

∑
m∈{−1,1}d

r(m)T∇2h r(m) = 0,

where ri(m) := qi(m)− qn(m). The condition g ∈ C 4 ensures u is smooth.
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Dynamic programming principle (DPP)

Recall the value function

VN (x , `;m) = min
|f`|≤1

max
b`=±1

· · · min
|fN−1|≤1

max
bN−1=±1

g

(
x +

N−1∑
i=`

bi(q(m i)− fi1)

)

Proposition (1-Step Dynamic Programming Principle)

For ` ≤ N − 1 and m ∈ {−1, 1}d

(10) VN (x , `;m) = min
|f |≤1

max
b=±1

VN (x + b(q(m)− f 1), `+ 1;m|b).

Note: The DPP is a coupled set of 2d equations.
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Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3.

With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1.
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Dynamic programming principle
Let us assume that

uN (x , t ;m) =
1√
N

VN (
√
Nx , dNte;m) ≈ u(x , t),

for some u ∈ C 3. With ε = N−1/2, the dynamic programming principle (DPP) becomes

u(x , t) = min
|f |≤1

max
b=±1

u(x + εb(q(m)− f 1), t + ε2)

= min
|f |≤1

max
b=±1

{
u(x , t) + ε2ut + εb∇uT (q(m)− f 1)

+
ε2

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
+ O(ε3)

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) may wish to choose f to cancel out ε−1 term:

f =
∇uTq(m) + εf #(m)

∇uT1
and ut +

1

2
η(m)T∇2u η(m)− bf #(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1. [Drenska and Kohn, 2019a]
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k -step Dynamic Programming Principle

Proposition (Dynamic Programming Principle)

For any N ≥ 1, x ∈ Rn , m ∈ Bd , k ≥ 1 and ` ≤ N − k it holds that

VN (x , `;m) = min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

VN

(
x +

k∑
i=1

bi(q(m i)− 1fi), `+ k ;mk+1

)
,

where m1 = m and m i+1 = m i |bi for i = 1, . . . , k .

The equivalent DPP for uN is

uN (x , t ;m) = min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

uN

(
x + ε

k∑
i=1

bi(q(m i)−1fi), t + ε2k ;mk+1

)
.
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The local problem

Assume uN (x , t ;m) ≈ u(x , t) for smooth u.

Then

u(x , t) = min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
u(x + ε∆x , t + kε2)

}
≈ min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
u + kε2ut + ε∇uT∆x +

ε2

2
∆xT∇2u∆x

}
,

and so

ut +
1

k
min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
ε−1∇uT∆x +

1

2
∆xT∇2u∆x

}
≈ 0.

Definition (Local Problem)

The local problem is defined by

L(ε, k ,X , p,m) := min
|f1|≤1

max
b1=±1

· · · min
|fk |≤1

max
bk=±1

{
ε−1pT∆x +

1

2
∆xTX∆x

}
where m1 = m, mi+1 = mi |bi , and ∆x :=

∑k
i=1 bi(q(mi)− 1fi).
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The local problem

Theorem (Local problem)

Let X ∈ S(n), p ∈ (0,∞)n , m ∈ Bd , k ≥ d + 1, ε > 0, and set γp = min1≤i≤n pi .
Then there exists C , c > 0, depending only on n, such that whenever ‖X ‖kε ≤ c ϑqγp
we have

(11)

∣∣∣∣∣∣ 1k Lk,ε(X , p,m)− 1

2d+1

∑
m∈Bd

η(m)TX η(m)

∣∣∣∣∣∣ ≤ C‖X ‖
(
d

k
+ ‖X ‖γ−1

p kε

)
.

Drenska, N., and Calder J. Online Prediction With History-Dependent Experts: The
General Case. To appear in Communications on Pure and Applied Mathematics
(CPAM), (2021).
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Back to the dynamic programming principle

With ε = N−1/2, the dynamic programming principle (DPP) becomes

ut + min
|f |≤1

max
b=±1

{
ε−1b∇uT (q(m)− f 1) +

1

2
(q(m)− f 1)T∇2u (q(m)− f 1)

}
= O(ε).

Investor (player) can choose a strategy of the form

f =
∇uTq(m) + ε

2
f #(m)

∇uT1
and ut + h(m)− b(m)

2
f #(m) = O(ε),

where η(m) = q(m)− ∇uT q(m)

∇uT1
1 and h(m) = 1

2
η(m)T∇2u η(m).

Question: How to choose f #(m) so the equation averages out to

ut + (h)Bd = 0 where (h)Bd :=
1

2d

∑
m∈Bd

h(m)

over many steps?
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Optimal investor strategy

Why not choose f #(m) so that

h(m)− b(m)

2
f #(m) = (h)Bd ?

This would violate the rules, since f # = 2
b(m)

(h(m)− (h)Bd ) depends on b.
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Optimal investor strategy
It turns out a small correction on this choice is possible. We choose f #(m) to satisfy

h(m)− b(m)

2
f #(m) = (h)Bd +H(m)−H(m|b(m)),

for a potential H to be determined.

Solving for f # = f #(m) we have

f # = 2b [h(m)− (h)Bd +H(m|b)−H(m)] .

Introducing the De Bruijn graph Laplacian

∆BdH(m) = H(m)− 1

2
H(m+)− 1

2
H(m−),

where m± = m|±1, we can write

f # = 2b
[
h(m)− (h)Bd −∆BdH(m)

]
+ b (H(m|b)−H(m|−b)) .

If ∆BdH(m) = h(m)− (h)Bd then

f # = b (H(m|b)−H(m|−b)) = H(m+)−H(m−).
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Poisson equation

The equation
∆BdH = h − (h)Bd

is a Poisson equation over the De Bruijn graph.

The solution is given by

H(m) = h(m) +

d−1∑
`=1

1

2`

∑
s∈B`

h(m|s).

The solution is unique up to an additive constant, and the optimal strategy

f # = H(m+)−H(m−)

is clearly independent of this constant.

It is possible to extend these ideas slightly to other directed graphs.

Calder, J., and Drenska, N. Asymptotically optimal strategies for online prediction with
history-dependent experts. Journal of Fourier Analysis and Applications 27.2 (2021):
1-20.
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Future work

1 Numerical schemes for solving the PDE and computing optimal strategies.

2 Generalizations to other games (e.g., Markov Decision Processes in adversarial
settings).

3 Prediction with mixed (randomized) strategies.

References:

Drenska, N., and Calder J. Online Prediction With History-Dependent Experts: The
General Case. To appear in Communications on Pure and Applied Mathematics
(CPAM), (2021).
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1-20.
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Open problem: Adversarial Multi-Armed Bandits

One-armed bandit
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Multi-armed bandits
There are N arms that a player can choose from on each turn. Each arm has a
random payoff drawn according to probability distributions p1, p2, . . . , pN .

On the k th step of the game, the player chooses an arm, say arm i , and receives a
payoff of Xi ∼ pi , independently on each step.

The player does not know the distributions pi , and only has knowledge of Xi .

The player wants to maximize their expected gain at the end of the game.

The key feature is the exploration vs exploitation tradeoff.
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Multi-armed bandits

Applications:

Multi-armed bandits is a model for allocation of limited resources among
competing alternatives (e.g., funding agencies).

The exploration vs exploitation tradeoff has connections to reinforcement learning
in machine learning.

Connection to prediction with expert advice:

The arms are analogous to experts, and the player has to choose which to follow.

Can we use similar PDE continuum limit tools to understand optimal strategies for
adversarial multi-armed bandits over many steps?

The key difference is that the player cannot observe the gains of the experts they
did not follow (the arms they did not pull). Need some new ideas to treat the
exploration part of multi-armed bandits.
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