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Statement of two (innocent looking) problems

Optimization

Find the unconstrained minimum of a function π(x) in Rd

min
x∈Rd

π(x)

Sampling

Let x ∈ X , where X ⊆ Rd and assume that we want to calculate an expectation with respect to
a probability distribution with smooth density π(x)

π(g) := Eπ(g) =

∫
X

g(x)π(x)dx
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Numerous applications

(a) Uncertainty quantification
for classification methods

(b) Image reconstruction
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Gradient flow

Consider the differential equation:

dx

dt
= −∇π(x).

This has the interesting property that

dπ(x)

dt
= −‖∇π(x)‖2 ⇒ lim

t→∞
x(t) = x∗,

where x∗ is a (unique) minimizer. This makes the equation above central
(or at least the simplest choice) for optimization purposes.
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Langevin dynamics
Consider the stochastic differential equation

dXt = ∇ log π(Xt)dt +
√

2dWt .

Under appropriate assumptions on ∇ log π(x) one can show that its dynamics are ergodic with
respect to π(x) : Rn 7→ R i.e

lim
T→∞

1

T

∫ T

0
g(Xs)ds = Eπ[g ] :=

∫
Rn

g(x)π(x)dx .

0 2000 4000 6000 8000 10000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

 

 

invariant measure

K. C. Zygalakis (University of Edinburgh) Sampling and Optimization Bath, 26/07/2021 7 / 48



In an ideal world!!!

There is nothing to be done...

Discretize the candidate differential equations and go
I Optimization: Go to infinity as quickly as possible (in terms of function

evaluations).
I Sampling: Go to infinity as quickly as possible (in terms of function

evaluations). Once there produce samples that are i.i.d.
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In real life...

Starting from the differential equation and discretising might not be
enough in terms of mimicking the rate of convergence to equilibrium.

Going to infinity as quickly as possible implies that you can use
arbitrary large time-steps in your numerical discretization.

Reality unfortunately comes back to bite you, as time-steps
restrictions appear once you discretize your (stochastic) differential
equation.
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Continuous time formulation

ξ̇(t) = Āξ(t) + B̄u(t),

y(t) = C̄ξ(t),

u(t) = ∇f (y(t)).

where ξ(t) ∈ Rn is the state, y(t) ∈ Rd(d ≤ n) the output, and
u(t) = ∇f (y(t)) the continuous feedback input. Fixed points of the
system satisfy

0 = Āξ?, y? = C̄ξ?, u? = ∇f (y?);

in our context u? = 0 and y? = x?.

[1] M.Fazlyab, A. Ribeiro, M. Morari, V. M. Preciado, SIAM J. Optim., 28(3), 2654–2689, (2018).
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The class F(m, L)

1 〈x − y ,∇f (x)−∇f (y)〉 ≥ m ‖x − y‖2.

2 ‖∇f (x)−∇f (y)‖2 ≤ L2 ‖x − y‖2.

An equivalent way of expressing these equations are the following
quadratic constraints:

1 [
x − y

∇f (x)−∇f (y)

]T [−mId
1
2 Id

1
2 Id 0d

] [
x − y

∇f (x)−∇f (y)

]
≥ 0.

2 [
x − y

∇f (x)−∇f (y)

]T [
L2Id 0d
0d −Id

] [
x − y

∇f (x)−∇f (y)

]
≥ 0.
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Three examples

1 Gradient flow: ẋ = −∇f (x).

Ā = 0d×d , B̄ = −Id×d , C̄ = Id×d .

2 Momentum equation-convex: ẍ + r
t ẋ +∇f (x) = 0

Ā =

[
0d 0d

r−1
t Id − r−1

t Id

]
, B̄ =

[
− t

r−1 Id
0d

]
, C̄ =

[
0d Id

]
.

3 Momentum equation-strongly convex: ẍ + b̄
√
mẋ +∇f (x) = 0.

Ā =

[
−b̄
√
mId 0d√

mId 0d

]
, B̄ =

[
−(1/

√
m)Id

0d

]
, C̄ =

[
0d Id

]
.

[2] W. Su, S. Boyd, E. J. Candés NIPS 2014: 2510-2518, (2014).
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(Continuous) Lyapunov functions

Consider

V (ξ(t), t) = α(t)(f (y(t))− f (y∗)) + (ξ(t)− ξ∗)P(t)(ξ(t)− ξ∗)

and assume that we can find α(t),P(t) � 0 such that

V (ξ(t), t) ≤ V (ξ(t0), t0)

then
0 ≤ f (y(t))− f (y∗) ≤ V (ξ(t0, t0))/α(t) = O(1/α(t))
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A small calculation

By differentiating the Lyapunov function we have

V̇ = α̇(t)(f (y(t))− f (y∗))

+ α(t)(∇f (y(t)))T ẏ(t)

+ 2(ξ(t)− ξ∗)TP(t)ξ̇(t)

+ (ξ(t)− ξ∗)T Ṗ(t)(ξ(t)− ξ∗)T

Setting e(t) = [(ξ(t)− ξ∗)T (u(t)− u∗)
T ] and using the strong convexity

properties of f (f ∈ Fm,L) we can obtain

˙V (t) ≤ eT (t)(· · · )e(t)

and if the matrix inside the parenthesis is negative definite then we are
done.
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A theorem for the (continuous) Lyapunov function

(Continuous) convergence to the minimizer
Suppose that there exist λ > 0, P̄ � 0, and σ ≥ 0 that satisfy

T̄ = M̄(0) + M̄(1) + λM̄(2) + σM̄(3) � 0

where

M̄(0) =

[
P̄Ā + ĀT P̄ + λP̄ P̄B̄

B̄T P̄ 0

]
,

M̄(1) =
1

2

[
0 (C̄ Ā)T

C̄ Ā C̄ B̄ + B̄T C̄T

]
,

M̄(2) =

[
C̄T 0

0 Id

] [
−m

2
Id

1
2
Id

1
2
Id 0

] [
C̄ 0
0 Id

]
,

M̄(3) =

[
C̄T 0

0 Id

] [− mL
m+L

Id
1
2
Id ,

1
2
Id − 1

m+L
Id

] [
C̄ 0
0 Id

]
.

Then the following inequality holds for f ∈ Fm,L, t ≥ 0,

f (y(t))− f (y?) ≤ e−λt
(
f (y(0))− f (y?) + (ξ(0)− ξ?)T P̄(ξ(0)− ξ?)

)
.
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Gradient flow vs momentum equations

Gradient flow: We have that λ = 2m.

Momentum equations: We have that λ =
√
m, when b̄ = 2

Some observations:

1 The momentum dynamics accelerate the convergence to equilibrium
(
√
m� m when m� 1.)

2 The value of b̄ = 2 in fact maximizes the decay rate of f for an
arbitrary f ∈ Fm,L.

[3] A.C. Wilson, B. Recht, M. I. Jordan, J. Mach. Learn. Res. 22 1-34, (2021)
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Discrete time

ξk+1 = Aξk + Buk ,

uk = ∇f (yk),

yk = Cξk ,

xk = Eξk .
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(Discrete) Lyapunov functions

Consider

Vk(ξ) = ρ−2k
(
a0(f (xk)− f (x?)) + (ξk − ξ?)T P(ξk − ξ?)

)
,

and assume that we can find a0 > 0,P � 0 such that

Vk+1(ξk+1) ≤ Vk(ξk),

we can then conclude

f (xk)− f (x?) ≤ ρ2k V0(ξ0)

a0
.

If ρ < 1, we have found a convergence rate for f (xk) towards the optimal
value f (x?).
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A theorem for the (discrete) Lyapunov function

(Discrete) convergence to miminizer
Suppose that there exist a0 > 0, P � 0, ` > 0, and ρ ∈ [0, 1) such that

T = M(0) + a0ρ
2M(1) + a0(1− ρ2)M(2) + `M(3) � 0,

where

M(0) =

[
AT PA− ρ2P AT PB

BT PA BT PB

]
, M(1) = N(1) + N(2)

, M(2) = N(1) + N(3)
, M(3) = N(4)

,

with

N(1) =

[
EA− C EB

0 Id

]T [ L
2
Id

1
2
Id

1
2
Id 0

] [
EA− C EB

0 Id

]
,

N(2) =

[
C − E 0

0 Id

]T [−m
2
Id

1
2
Id

1
2
Id 0

] [
C − E 0

0 Id

]
,

N(3) =

[
CT 0

0 Id

] [
−m

2
Id

1
2
Id

1
2
Id 0

] [
C 0
0 Id

]
,

N(4) =

[
CT 0

0 Id

] [− mL
m+L

Id
1
2
Id

1
2
Id − 1

m+L
Id

] [
C 0
0 Id

]
.

Then, for f ∈ Fm,L, the sequence {xk} satisfies f (xk )− f (x?) ≤ a0(f (x0)−f (x?))+(ξ0−ξ
?)T P(ξ0−ξ

?)
a0

ρ2k .
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A family of algorithms

xk+1 = xk + β(xk − xk−1)− α∇f (yk),

yk = xk + γ(xk − xk−1),

1 For β = γ = 0 we recover the gradient descent

xk+1 = xk − αf (xk).

2 For γ = β we recover the Nesterov method.

3 For γ = 0, β 6= 0 we recover the heavy ball method.
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Nesterov method

We introduce δ =
√
mα and dk = 1

δ (xk − xk−1), so we can re-write our
algorithm as:

dk+1 = βdk −
α

δ
∇f (yk),

xk+1 = xk + δβdk − α∇f (yk),

yk = xk + δβdk .

Setting ξk = [dTk , x
T
k ]T ∈ R2d we can express the algorithm in the discrete

form with

A =

[
βId 0
δβId Id

]
, B =

[
−(α/δ)Id
−αId

]
, C =

[
δβId Id

]
, E =

[
0 Id

]
.
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Dimension reduction

The matrix A is a a Kronecker product of a 2× 2 matrix and Id ,

A =

[
β 0
δβ 1

]
⊗ Id ;

The matrices B, C and E have a similar Kronecker product structure.

It is then natural to consider symmetric matrices P of the form

P = P̂ ⊗ Id , P̂ =

[
p11 p12

p12 p22

]
,

T will also have a Kronecker product structure

T = T̂ ⊗ Id , T̂ =

t11 t12 t13

t12 t22 t23

t13 t23 t33

 .
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Structure of T̂

We have

t11 = β2p11 + 2δβ2p12 + δ2β2p22 − ρ2p11 − δ2β2m/2,

t12 = βp12 + δβp22 − ρ2p12 − δβm/2 + ρ2δβm/2,

t13 = −δ−1αβp11 − 2αβp12 − δαβp22 + δβ/2,

t22 = p22 − ρ2p22 −m/2 + ρ2m/2,

t23 = −δ−1αp12 − αp22 + 1/2− ρ2/2,

t33 = δ−2α2p11 + 2δ−1α2p12 + α2p22 + α2L/2− α.

Our task is to find ρ ∈ [0, 1), p11, p12, and p22 that lead to T̂ � 0 and
P̂ � 0 (which imply T � 0 and P � 0 ).
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Solution
The algebra becomes simpler if we represent β and ρ2 as:

β = 1− bδ, ρ2 = 1− rδ.

Note that we are interested in r ∈ (0, 1/δ] so as to get ρ2 ∈ [0, 1). Going through
the algebra we find

P̂ =

[
p11 p12

p12 p22

]
=

m

2

[
(1− rδ)2 r(1− rδ)
r(1− rδ) r2

]
, α ≤ 1

L
, r ≤ 1

as well as Ξ = 0 where

Ξ := Ξδ(r , b) = (r + δ)(1− δ2)b2 − 2(1 + r2)(1− δ2)b + (r3 − 3r2δ + 3r − δ).

Since δ =
√
mα and α ≤ L−1, this implies that

ρ2 = 1− r√
κ

hence the Nesterov algorithm maintains the acceleration of the original
differential equation.
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Convergence of the algorithm

Theorem

With the choices of parameters as in the previous slide the matrix T is
negative semi-definite. As a result, for any x−1, x0, the sequence

ρ−2k
(
f (xk)− f (x?) + [dTk , x

T
k − xT? ]P [dTk , x

T
k − xT? ]T

)
decreases monotonically, which, in particular, implies

f (xk)− f (x?) ≤ Cρ2k

with

C = f (x0)− f (x?) +
m

2

∥∥∥∥1− rδ

δ
(x0 − x−1) + r(x0 − x?)

∥∥∥∥2

.
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Connection with the ODE

Convergence between discrete and continuous Lyapunov function

Fix the parameter b̄ > 0 and the initial conditions x(0), ẋ(0) for the
momentum equations. For small h > 0, consider the Nesterov method
with parameters α = h2 and β = βh = 1− b̄

√
mh + o(h). Assume that

the initial points x−1, x0 are such that, as h ↓ 0, x0 → x(0) and
(1/h)(x0 − x−1)→ ẋ(0). Then, in the limit kh→ t,

1 xk → x(t) and (1/h)(xk+1 − xk)→ ẋ(t).

2 The discrete Lyapunov function converges to the continuous
Lyapunov function
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Is consistency enough?

1 From an intuitive point of view the previous theorem is obvious, i.e
you start with and ODE you discretise it and the numerical algorithm
inherits its properties for some finite h

2 The key however is how large this h can be, while maintaining the
negative definiteness of the matrix T .

3 From consistency in order to achieve acceleration one needs to be able
to preserve the negative definiteness of T for time steps h ≤ cL−1/2

I In the case of the Nesterov method one has that h ≤ L−1/2, which
leads to acceleration.

I This is however not true in general. In particular in the case of
Heavy ball method one can show that the matrix T cannot be negative

definite for h ≤ cL−1/2 for any c > 0, and hence the heavy ball method
doesn’t lead to acceleration.

[4] L. Lessard, B. Recht, A. Packard, SIAM J. Optim., 26(1), 57–95. (2016)
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Continuous time formulation

dξ(t) = Aξ(t)dt + Bu(t)dt + σdW (t),

x(t) = Cξ(t),

u(t) = ∇f (x(t)).

Here ξ ∈ RN is the state, u ∈ Rd is the input, x ∈ Rd is the output that is
mapped to u by the nonlinear map ∇f and W represents the standard
M-dimensional Brownian motion. The real matrices A, B, C and σ are
constant, with sizes N × N, N × d , d × N and N ×M respectively. We
define

D = (1/2)σσT .
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Two examples

1 The overdamped Langevin equation

dx = −c∇f (x) dt +
√

2c dW (t),

for which we have N = d , M = d , ξ = x , and

A = 0d B = −cId C = Id σ =
√

2cId .

2 The underdamped Langevin equation

dv = −γv dt − c∇f (x) dt +
√

2γc dW (t),

dx = v dt.

for which we have N = 2d , M = d , ξ = [vT , xT ]T and

A =

[
−γId 0
Id 0

]
, B =

[
−cId

0

]
, C =

[
0 Id

]
, σ =

[√
2γcId

0

]
.
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Equilibrium behaviour

Necessary conditions

Assume that S is an N × N positive semidefinite symmetric matrix.

The relations

Tr(A + DS) = 0,

CB + CDCT = 0,

CA + BTS + 2CDS = 0,

SA + ATS + 2SDS = 0,

imply that the SDE has invariant probability distribution π? with
density

∝ exp
(
− f (Cξ)− (1/2)ξTSξ

)
.

If SCT = 0, then the marginal of ∝ exp
(
− f (Cξ)− (1/2)ξTSξ

)
on

x = Cξ is the target ∝ exp(−f (x)).
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Convergence to the invariant distribution I

Similarly to the optimization case a natural question to ask is how fast
does the true solution of the SDE converges to the invariant measure?

We will do by bounding the error in terms of time of the following
Wasserstein distance

WP(Φtπ, π
?)

where π denotes the probability distribution of the initial value ξ(0),
while

WP(π1, π2) =

(
inf
ζ∈Z

∫
RN

‖x − y‖2
Pdζ(x , y)

)1/2

,

with P a positive definite matrix, and where Z is the set of all couplings
between π1 and π2.
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Convergence to the invariant distribution II
In order to estimate the quantity of interest, we consider

dξ(1)(t) = Aξ(1)(t)dt + B∇f (Cξ(1)(t))dt + σdW (t),

dξ(2)(t) = Aξ(2)(t)dt + B∇f (Cξ(2)(t))dt + σdW (t),

Contractivity implies convergence

Assume that P � 0 and λ > 0 exist such almost surely,

‖ξ(2)(t)− ξ(1)(t)‖2
P ≤ e−λt‖ξ(2)(0)− ξ(1)(0)‖2

P , t > 0.

Then, for arbitrary distributions, π1 and π2,

WP(Φtπ1,Φtπ2) ≤ e−λt/2WP(π1, π2), t > 0,

and, in particular, for arbitrary π,

WP(Φtπ, π
?) ≤ e−λt/2WP(π, π?), t > 0.
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Convergence to equilibrium III

On top of assuming that f ∈ F(m, L) we will assume that it is twice
differentiable. This implies that the eigenvalues of ∇∇f are bounded
between m and L

Another matrix formulation

Let P � 0 be an N × N symmetric matrix and λ > 0. Assume that, for
each y1, y2 ∈ Rd , the matrix

T (λ,P, y1, y2) = λP + P
(
A + BH̄(y1, y2)C

)
+
(
A + BH̄(y1, y2)C

)T
P

is � 0. Then the contractivity estimates hold. Here

H̄(y2, y1) =

∫ 1

0
H
(
y1 + z [y2 − y1]

)
dz
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Dimension reduction

The previous proposition is difficult to use in practice.

The following structure though is typical in applications

A = Â⊗ Id , B = B̂ ⊗ Id , C = Ĉ ⊗ Id ,

Continuous generalized eigenvalue problem

Given the symmetric, positive definite P̂, and Ẑ (H) given by

Ẑ (H) = −P̂
(
Â + HB̂Ĉ

)
−
(
Â + HB̂Ĉ

)T
P̂.

Assume that, as H varies in [m, L], the eigenvalues Λ of the generalized
eigenvalue problem Ẑ (H)x = ΛP̂x are positive and bounded away from
zero and let λ > 0 be the infimum of those eigenvalues. Then the
contractivity bound with P = P̂ ⊗ Id holds almost surely.
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Two examples

1 Overdamped Langevin equation : We have that P̂ = 1, and that λ = 2cm.

2 Underdamped Langevin equation : For c = 1/L we have λ = 1/κ and

P̂ =

[
1 1
1 2

]
, L̂ =

[
1 0
1 1

]
.

I It is possible to show that the best possible rate corresponds to the
choice of c = 4/(L + m) yeilding λ = 4/(κ+ 1)
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Discrete time formulation

We will focus on algorithms with one function evalution

ξn+1 = Ahξn + Bhun + σξhΩn,

yn = Chξn + σyhΩn,

un = ∇f (yn).

Similarly to the continuous case we want to study the convergence to
equilibrium

Note that in general the numerical equilibrium will be different than
the invariant measure of the continuous time SDE
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Convergence to (discrete) equilibrium

In order to estimate the quantity of interest we will consider

ξ
(1)
n+1 = Ahξ

(1)
n + Bh∇f (Chξ

(1)
n + σyhΩn) + σξhΩn,

ξ
(2)
n+1 = Ahξ

(2)
n + Bh∇f (Chξ

(2)
n + σyhΩn) + σξhΩn,

and denote by Ψh,nπ the probability distribution for ξn of the numerical
solution when π is the distribution of ξ0

Contractivity implies convergence

Assume that Ph � 0 and ρh ∈ (0, 1) exist such that almost surely,

‖ξ(2)
n+1 − ξ

(1)
n+1‖

2
Ph
≤ ρh‖ξ

(2)
n − ξ(1)

n ‖2
Ph
, n = 0, 1, . . .

Then, for arbitrary distributions, π1 and π2,

WP(Ψh,nπ1,Ψh,nπ2) ≤ ρn/2
h WP(π1, π2), n = 0, 1, . . .
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Checking discrete contractivity

In a similar way as in the continuous case one can reduce the high
dimensional matrix inequality to a low dimensional generalized
eigenvalue problem

Discrete generalized eigenvalue problem

Given the symmetric, positive definite P̂h, set

Ẑh(H) =
(
Âh + HB̂hĈh

)T
P̂h

(
Âh + HB̂hĈh

)
.

Assume that, as H varies in [m, L], the supremum ρh of the eigenvalues R
of the generalized eigenvalue problems Ẑh(H)x = RP̂x is < 1. Then the
contractivity bound with Ph = P̂h ⊗ Id holds almost surely.
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A general error decomposition

We are interested in characterising the following error

WPh
(Ψh,n+1π, π

∗)

There are two different ways to decompose it
1 WPh

(Ψh,n+1π, π
∗) ≤ WPh

(Ψh(Ψh,nπ),Ψhπ
∗)︸ ︷︷ ︸

numerical contraction

+ WPh
(Ψhπ

∗
,Φhπ

∗)︸ ︷︷ ︸
local error

2 WPh
(Ψh,n+1π, π

∗) ≤ WPh
(Φh(Ψh,nπ),Φhπ

∗)︸ ︷︷ ︸
SDE contraction

+ WPh
(Ψh(Ψh,nπ),Φh(Ψh,nπ))︸ ︷︷ ︸

local error

We will follow the first decomposition, the first term is controlled by
the numerical contractivity of the numerical scheme, while the second
term relates to the local strong order of convergence of the numerical
scheme.
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Bringing everything together

A general theorem

Assume that there are constants h0 > 0, r > 0 such that for h ≤ h0 the
contractivity estimate holds with ρh ≤ (1− rh)2. Then, for any initial
distribution π, stepsize h ≤ h0, and n = 0, 1, . . .,

WPh
(π?,Ψh,nπ) ≤ (1− hRh)nWPh

(π?, π) +

(√
2C1√
Rh

+
C2

Rh

)
hp,

with

Rh =
1

h

(
1−

√
(1− rh)2 + C0h2

)
= r + o(1), as h ↓ 0.
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Non-asymptotic estimates

The theorem allows us to study arbitrary one step integrators in terms of
their non-asymptotic properties, namely how many steps n one should
make in order to ensure that WPh

(Ψh,nπ, π
∗) < ε

[5] A. S. Dalalyan, COLT2017
[6] A. S. Dalalyan and A. Karagulyan, Stoch. Proc. Appl, 129(12):5278–5311, (2019).
[7] A. Durmus and E. Moulines, Ann. Appl. Probab.27(3):1551–1587, (2017)
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Exponential Euler

vn+1 = E(h)vn −F(h)c∇f (xn) +
√

2γc

∫ tn+1

tn

E(tn+1 − s)dW (s),

xn+1 = xn + F(h)vn − G(h)c∇f (xn) +
√

2γc

∫ tn+1

tn

F(tn+1 − s)dW (s).

where

E(t) = exp(−γt), F(t) =

∫ t

0

E(s) ds =
1− exp(−γt)

γ
,

and

G(t) =

∫ t

0

F(s) ds =
γt + exp(−γt)− 1

γ2
.

Analysing this integrator using the tools developed the number of steps needed to
achieve the desired accuracy scales as

(m1/2ε)−1κ3/2d1/2.

This is an improvement of the previous available estimate O(ε−1κ2d1/2)

[8] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, COLT 2018.
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UBU algorithm

vn+1 = E(h)vn − hE(h/2)c∇f (yn) +
√

2γc

∫ tn+1

tn

E(tn+1 − s)dW (s),

xn+1 = xn + F(h)vn − hF(h/2)c∇f (yn) +
√

2γc

∫ tn+1

tn

F(tn+1 − s)dW (s),

yn = xn + F(h/2)vn +
√

2γc

∫ tn+1/2

tn

F(tn+1/2 − s)dW (s).

1 This is a second order strong integrator

2 Under further smoothness assumptions on the third derivative, the number
of steps n to achieve the desired accuracy scales as

(m1/2ε)−1/2κ5/4(1 + L−3/2L1)1/2d1/4.

[9] A. Alamo and J. M. Sanz-Serna, SIAM J. Numer. Anal., 54(6):3239–3257, (2016)
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Conclusions

(Stochastic) differential equations are excellent starting point in terms
of designing (sampling) optimization algorithms.

However for optimization algorithms stability is crucial in terms of
being able to utilize the favourable convergence rates of the
continuous system.

In terms of designing sampling methods one needs to be paying
attention to

1 the contractivity properties of the numerical scheme.
2 the strong order of convergence of the numerical scheme.
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