Optimal cuts of random geometric graphs

Mathew Penrose (University of Bath, UK)

Analytic and Geometric approaches to Machine Learning ICMS Workshop, Bath July 2021

・ロン ・日ン・エン・エー うらん

Random geometric graphs (Penrose 2003)

Let D be a bounded region in \mathbb{R}^d (or more generally, a d-dimensional Riemannian manifold) with $d \geq 2$.

Let X_1, X_2, \ldots, X_n be points sampled randomly uniformly from D.

Aim: Learn about D from the sample, via the following graph.

Given r > 0, let G(n, r) be the weighted graph on vertex set $V_n := \{X_1, \ldots X_n\}$ with weights

$$W_{xy} := \phi\left(\frac{|x-y|}{r}\right)$$

where $\phi(t) = \mathbf{1}_{[0,1]}(t)$, $t \ge 0$, and $|\cdot|$ is Euclidean.

i.e., connect any two points of V_n at Euclidean distance at most r_n .

[Could also consider non-uniform samples, and other weight functions ϕ such as $\phi(t) = \exp(-t^2)$]

Isolated vertices of G(n, r)

Assume $D \subset \mathbb{R}^d$ open and connected. Also assume D has unit volume and a *Lipschitz boundary* ∂D [this holds e.g. if ∂D is smooth or D is a cube].

Assume we have access to a large sample and can choose $r = r_n, r_n \rightarrow 0$. Then asymptotic (large-n) properties of $G(n, r_n)$ may be relevant.

Let I(G) denotes the number of isolated vertices of G,

 $\mathbb{E}[I(G(n,r_n)] \sim n \exp(-n\omega_d r_n^d) \text{ as } n \to \infty. \text{ [} \omega_d := \text{ volume of unit ball]}$ So if $\omega_d n r_n^d = a \log n$ then $\omega_v \cdot \circ (eq) fee$ $\lim_{n \to \infty} \mathbb{E}[I(G(n,r_n))] = \begin{cases} \infty \text{ if } a < 1\\ 0 \text{ if } a > 1. \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Connectivity of G(n,r)

From above: if $\omega_d n r_n^d = a \log n$ [i.e., $r_n = (a \log n/(n\omega_d))^{1/d}$] then $\lim_{n \to \infty} \mathbb{E}[I(G(n, r_n))] = \begin{cases} \infty \text{ if } a < 1\\ 0 \text{ if } a > 1. \end{cases}$ In fact it turns out that

$$\lim_{n \to \infty} \mathbb{P}[G(n, r_n) \text{ is connected}] = \begin{cases} 0 \text{ if } a < 1\\ 1 \text{ if } a > 1 \end{cases}$$

If $\omega_d n r_n^d \ge (1 + \varepsilon) \log n$, $G(n, r_n)$ is likely to be connected for large n.

Conversely, if D is *not* connected and $r_n \to 0$, then $G(n, r_n)$ will *not* be connected for large n.

i.e. we can learn about connectivity of D from that of $G(n, r_n)$.

[In preparation with Xiaochuan Yang, exact limit of $\mathbb{P}[G(n, r_n) \text{ connected}]$.

Optimal cuts of a (weighted) graph G = (V, W)

For $U \subset V$, set $\partial_G(U) := \sum_{v \in U} \sum_{w \in V \setminus U} W_{vw}$ and $\operatorname{vol}_G(U) := \frac{\#(U)}{\#(V)}$ The minimum bisection cost and cheeger constant (conductance) of G are

$$\operatorname{MBIS}(G) := \min_{U \subset V : |U| = \lfloor |V|/2 \rfloor} \partial_G(A)$$

$$CHE(G) = \min\left\{\frac{\partial_G(U)}{\operatorname{vol}_G(U)} : U \subset V, 0 < \operatorname{vol}_G(U) \le 1/2\right\}$$

The denominator penalizes unbalanced cuts. [Alternatively could define vol(U) by counting edges rather than vertices]

Uses: bounds on mixing times of random walk on graph, bounds on graph laplacian; reasonable criteria for optimal cut.

Question: Do these quantities for $G(n, r_n)$ converge to analogous quantities of interest for D?

(日)

Optimal cuts of a bounded domain $D \subset \mathbb{R}^d$

[Cheeger's inequality: $\lambda_1 \geq \frac{(CHE(D))^2}{4}$, where λ_1 is the first non-zero eigenvalue of $-\triangle$ on D.]

・<
・<
・<
・<
・<
・<
・<
・<
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
<l

Can we learn about D from the sample V_n ?

In particular, about CHE(D) from $CHE(G(n, r_n))$, given $(r_n)_{n\geq 1}$?

Given $U \subset V_n$, we'll use notation

$$\partial_n(U) := \partial_{G(n,r_n)}(U),$$
$$\operatorname{vol}_n(U) := \operatorname{vol}_{G(n,r_n)}(U) = \#(U)/n.$$

Also, assume that $r_n \ll 1$ and (unless stated otherwise) that

$$nr_n^d \gg \log n,$$

where $a_n \ll b_n$ or $b_n \gg a_n$ means $(a_n/b_n) \to 0$ as $n \to \infty$.

Note: $\exists c > 0$: if $nr_n^d \le c \log n$ then G is not connected so CHE(G) = 0. Need at least $nr_n^d \ge c \log n$ to have any chance of learning anything from $CHE(G(n, r_n))$. But want r_n small for computational reasons.

Asymptotic upper bound for CHE(G)

 $CHE(G(n, r_n)) = \min\left\{\frac{\partial_n(U)}{\operatorname{vol}_n(U)} : U \subset V_n, 0 < \operatorname{vol}_n(U) \le 1/2\right\}$

Choose $A \subset D$ to minimize $|\partial_D A|/|A|$ subject to $0 < |A| \le \frac{1}{2}$. Let $U_n = V_n \cap A$. By the Law of Large Numbers, $\operatorname{vol}_n(U_n) \to |A|$. Also,

$$\mathbb{E}[\partial_n(U_n)] = n^2 \int_A \int_{D \setminus A} \mathbf{1}_{[0,r_n]}(|y-x|) dy dx$$
$$\sim |\partial_D A| \sigma n^2 r_n^{d+1},$$

with $\sigma := (1/2) \int_{\mathbb{R}^d} x_1 \mathbf{1}_{[0,1]}(|x|) dx$. ['Surface tension' of $\phi = \mathbf{1}_{[0,1]}$]. So assuming $\partial_n(U_n) \sim \mathbb{E}[\partial_n(U_n)]$, as $n \to \infty$

 $\limsup n^{-2} r_n^{-d-1} \operatorname{CHE}(G(n, r_n)) \le \limsup n^{-2} r_n^{-d-1} \left(\frac{\partial_n(U_n)}{\operatorname{vol}_n(U_n)} \right)$

$$= \frac{\sigma |\partial_D A|}{|A|} = \sigma \text{CHE}(D)$$

0

Theorem (García Trillos et al. '16; Müller/P. '20)

$$\begin{bmatrix} \mathsf{Recall} \ \mathrm{CHE}(D) := \inf \left\{ \frac{|\partial_D A|}{|A|} : A \subset D, 0 < |A| \le |D|/2 \right\} \\ \mathrm{CHE}(G) = \min \left\{ \frac{\partial_G(U)}{\mathrm{vol}_G(U)} : U \subset V(G), 0 < \mathrm{vol}_G(U) \le 1/2 \right\} \end{bmatrix}$$

Under our conditions (|D| = 1, ∂D Lipschitz, $r_n \to 0$, $nr_n^d \gg \log n$), a.s.:

- $n^{-2}r_n^{-d-1}CHE(G(n,r_n)) \rightarrow \sigma CHE(D).$ [already shown \leq]
- If $A \subset D$ is the (essentially) unique Cheeger minimizer, i.e. |A| < 1/2and $\frac{|\partial_D A|}{|A|} < \frac{\partial_D A'}{|A'|}$ for all $A' \subset D$ with $|A' \triangle A| \neq 0$, then $\forall A_A$ minimizing in $\in H \in (G \subseteq A, \Gamma_A)$ $n^{-1} \sum_{x \in A_n} \delta_x \to \operatorname{Leb}_d|_A$ weakly.
- If A is not unique, we still have convergence on a subsequence.
- Also $n^{-2}r_n^{-d-1}$ MBIS $(G(n, r_n)) \to \sigma$ MBIS(D),
- G. Trillos et al. needed the additional condition $nr_n^2 \gg (\log n)^{3/2}$ if d = 2.

Sketch proof of lower bound

- Let $U_n \subset V_n, n \ge 1$ be any sequence of Cheeger minimisers in $G(n, r_n)$. Label points of U_n 'red', points of $V_n \setminus U_n$ 'green'.
- Divide D into cubes (boxes) of side $\gamma_n r_n$, where γ_n is a sequence of constants with $1 \gg \gamma_n$ and $n(\gamma_n r_n)^d \gg \log n$.
- WHP, each box contains about $n(\gamma_n r_n)^d$ points of V_n .
- All the boxes must be 'mostly red' or 'mostly green'.
- Let U_n^* be the union of 'mostly red' boxes. Then

$$n^{-2}r_n^{-d-1}\partial_n(U_n) \approx r_n^{-d-1} \int_D \int_D \phi\left(\frac{|x-y|}{r_n}\right) |\mathbf{1}_{U_n^*}(y) - \mathbf{1}_{U_n^*}(x)| dy dx$$

=: $F_n(\mathbf{1}_{U_n^*})$, where $F_n(\mathbf{1}_B)$ is a smoothed measure of $|\partial B|$, $B \subset D$. • Homogeneity: $F_n(af) = aF_n(f)$ for all $f \in L^1(D)$ and a > 0.

▲□ > ▲□ > ▲□ > ▲□ > ▲□ > ▲□ > ● ●

A

Continuing, recall U_n is a Cheeger minimiser in $G(n, r_n) =: G_n$.

$$n^2 r_n^{-d-1} \operatorname{CHE}(G_n) = n^2 r_n^{-d-1} \frac{\partial_n(U_n)}{\operatorname{vol}_n(U_n)} \approx F_n(g_n)$$

where we define $g_n := |U_n^*|^{-1} \mathbf{1}_{U_n^*} \in L^1(D)$ and for $g \in L^1(D)$ we define

$$F_n(g) := r_n^{-d-1} \int_D \int_D \phi\left(\frac{|y-x|}{r_n}\right) |g(y) - g(x)| dy dx.$$

The g_n are bounded in L^1 , and by a compactness result of Garcia Trillos and Slepčev 2016), there exist $g \in L^1(D)$ and a subsequence of \mathbb{N} with $g_n \to g$ in L^1 as n goes to infinity along the subsequence. Then by a Gamma-convergence result (also GT&S 2016),

$$\liminf F_n(g_n) \ge F(g)$$

where $F: L^1(D) \to \mathbb{R}$ is homogeneous and for $A \subset D$, we have

$$F(\mathbf{1}_A) = \sigma |\partial_D A|.$$

But $g = \mathbf{1}_A/|A|$ for some A so $F(g) = |\partial_D A|/|A| \ge \operatorname{CHE}(\mathbb{P})$.

The largest component of $G_n := G(n, r_n)$

Let L(G) be the number of vertices in the largest component of G.

The asymptotic behaviour of $L(G_n)$ is governed by that of nr_n^d [note the average degree $\sim nr_n^d \omega_d$, where $\omega_d = \text{vol. of unit ball}$]

If $\lim_{n\to\infty} nr_n^d < \lambda_c(d)$ then $n^{-1}L(G_n) \xrightarrow{P} 0$ as $n \to \infty$. If $nr_n^d = \lambda > \lambda_c(d)$ then $n^{-1}L(G_n) \xrightarrow{P} \theta(\lambda) \in (0,\infty)$.

 $(\lambda_c(d) \text{ is a percolation threshold, not known explicitly.})$ This is called a **giant component** phenomenon.

If $nr_n^d \to \infty$ but $nr_n^d/(\log n) \to 0$, then $n - L(n) = I(G_n)$ to first order. [P. and Yang, in preparation]

・<
・<
・<
・<
・<
・<
・<
・<
・<
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
<

Open problems (now $G_n := G(n, r_n)$)

We know $a_n \operatorname{CHE}(G_n) \to \operatorname{CHE}(D)$ and $a_n \operatorname{MBIS}(G_n) \to \operatorname{MBIS}(D)$ when $1 \gg r_n \gg ((\log n)/n)^{1/d}$.

Can we extend this to when $r_n = c((\log n)/n)^{1/d}$, large c?

Or even to when $r_n \gg n^{-1/d}$, at least for MBIS? (If $n^{-1/d} \ll r_n \ll ((\log n)/n)^{1/d}$ then $1 \ll (n - L(G_n)) \ll n$, where L(G) is the order of the largest component of G.)

Or to the k-nearest-neighbour graph on V_n where $k = k(n) \gg \log n$? (connect each vertex by an undirected edge to its k nearest neighbours).

Or to other point processes on D, e.g. a regular grid?

References

- García Trillos, N. and Slepčev, D. (2016) Continuum limit of total variation on point clouds. *Arch. Ration. Mech. Anal.* **220**, 193-241.
- García Trillos, N., Slepčev, D., von Brecht, J., Laurent, T. and Bresson, X. (2016) Consistency of Cheeger and ratio cuts. *Journal of Machine Learning Research*.
- Müller, T. and Penrose, M.D. (2020) Optimal Cheeger cuts and bisections of random geometric graphs. *Annals of Applied Probability.*
- Penrose, M. (2003) Random Geometric Graphs. Oxford Uni. Press

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つへぐ</p>