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Random geometric graphs (Penrose 2003)

Let D be a bounded region in R? (or more generally, a d-dimensional
Riemannian manifold) with d > 2.
Let X1, Xo,...,X,, be points sampled randomly uniformly from D.

Aim: Learn about D from the sample, via the following graph.

Given r > 0, let G(n,r) be the weighted graph on vertex set
‘_fﬂ’:: {X1,...X,} with weights

where ¢(t) = 1j9 )(t), t > 0, and | - | is Euclidean.
i.e., connect any two points of V,, at Euclidean distance at most r,,.

[Could also consider non-uniform samples,
and other weight functions ¢ such as ¢(t) = exp(—=t?)]



Isolated vertices of G(n,r)

Assume D C R? open and connected. Also assume D has unit volume and
a Lipschitz boundary 0D [this holds e.g. if 0D is smooth or D is a cube].

Assume we have access to a large sample and can choose r = r,,r, — 0.
Then asymptotic (large-n) properties of G(n,r,) may be relevant.

Let 1(GG) denotes the number of isolated vertices of G,

E[I(G(n,r,)] ~ nexp(=nwgrd) as n — 0o. [ wq := volume of unit ball]
s

So if wgnrd = alogn then
7

av. oleg/ee {ooifa<1

lim E[I(G(n,m))] =9 "0 )

n—00



Connectivity of G(n,r)

From above: if wynr? = alogn [i.e., 7, = (alogn/(nwy))"? then

o ifa<1
lim,,—oo E[I(G(n,r,))] =
~ (G ) 0if a > 1.
In fact it turns out that @ p
Difa<1 |
lim P[G(n,ry,) is connected]| = 1 . -
n—00 lifa>1

If wgnrd > (1+¢)logn, G(n,ry,) is likely to be connected for large n.
n

Conversely, if D is not connected and r, — 0, then G(n,r,) will not be
connected for large n.
i.e. we can learn about connectivity of D from that of G(n,r,).

[In preparation with Xiaochuan Yang, exact limit of P|G(n,r,) connected].
T —



For U C V., set g(U) = 3 ey S errv Wow and volg(U) := 13 The
minimum bisection cost and cheeger constant (conductance) of G are

MBIS(G) = n de(A
= v By 2

dc(U)
volg (U)

The denominator penalizes unbalanced cuts. [Alternatively could define
vol(U) by counting edges rather than vertices]

Uses: bounds on mixing times of random walk on graph, bounds on graph
laplacian; reasonable criteria for optimal cut.

CHE(G):min{ :U CV,0 <volg(U) < 1/2}

Question: Do these quantities for G(n,r,) converge to analogous
quantities of interest for D?



Optimal cuts of a bounded domain D C R¢

Define the minimal bisection and Cheeger constant of D by

MBIS(D) := inf{|dpA| : A C D, |A| = 1/2}

OpA|
Al
|A| denotes the volume of A, [0pA| denotes the perimeter of A within D,

i.e. the surface measure of AN D\ A (where A means closure of A).

CHE(D) := inf{ L AC D,0<|A] < |D\/2} ,

[Cheeger's inequality: A1 > iﬁiﬂﬁ, where A is the first non-zero
eigenvalue of —A on D]



Can we learn about D from the sample V,,?

In particular, about CHE(D) from CHE(G(n,ry,)), given (ry)p>17
Given U C V,,, we'll use notation

8n(U) = aG(n,rn)(U)a
vol, (U) := volg(n,r,) (U) = #(U)/n.

Also, assume that r, < 1 and (unless stated otherwise) that
d
nr, > logn,

where a,, < b, or b, > a, means (a,/b,) — 0 as n — 0.

Note: 3¢ > 0: if nrd < clogn then G is not connected so CHE(G) = 0.
Need at least nr? > clogn to have any chance of learning anything from
CHE(G(n,ry,)). But want 7, small for computational reasons.



Asymptotic upper bound for CHE(G)

CHE(G(n, 7)) = min { ;s : U € V,,,0 < vol, (U) < 1/2}

Choose A C D to minimize |0pA|/|A| subject to 0 < |A| < 3.
Let U,, = V,, N A. By the Law of Large Numbers, vol,,(U,,) — |A|. Also,

A D
[0, (Uy)] = n? / / 10,1(ly — 2)dydz a'
AJD\A
~ |8DA]0n2rg+1,

with o := (1/2) [pa 211j01)(|z|)dz. ['Surface tension’ of ¢ = 1 1].
So assuming 0, (Uy,) ~ E[0,(Uy)], as n — o

limsup n”~?r, " 'CHE(G(n,r,)) < limsupn~2r, ! (iﬁE]UnZ))

_ "‘?jﬁ’ — ¢CHE(D)




Theorem (Garcia Trillos et al. ‘16; Miiller/P. ‘20)

[Recall CHE(D) := inf { 9041 . 4« D,0 < |A| < ]D\/Q}
CHE(G) = min{ %6U) . 17 « V(G),0 < volg(U) < 1/2} ]

volg(U)

Under our conditions (|D| = 1, 9D Lipschitz, r, — 0, nr? > logn), a.s.:

o n2r, “"'CHE(G(n,r,)) — cCHE(D). [already shown <]
—_—
o If A C D is the (essentially) unique Cheeger minimizer, i.e. |A| < 1/2
and 19521 < 38 for all A’ C D with |A'AA| # 0, then 5
V AL minieing nHECGCATAND

n-1 Z 0 — Lebgla  weakly.
T€EA,

@ If A is not unique, we still have convergence on a subsequence.
o Also n~2r =MBIS(G(n,r,)) — cMBIS(D),

n

G. Trillos et al. needed the additional condition nr2 > (logn)3/? if d = 2.



Sketch proof of lower bound

Let U,, C V,,,n > 1 be any sequence of Cheeger minimisers in
G(n,ry). Label points of U, ‘red’, points of V,, \ U, ‘green’.

Divide D into cubes (boxes) of side v,,1,, where =, is a sequence of
constants with 1 > «,, and n(y,r,)? > logn. D

WHP, each box contains about n(fynrn)d points of V,.
All the boxes must be ‘mostly red’” or ‘mostly green’.

Let U be the union of ‘mostly red’ boxes. Then

x —_
n"2r 4719, (U,) ~ Tﬁd_lf / ) (‘ y\) 1y (y) — 1y (v)|dydx
D JD n

=: F,,(1yx), where F,(1p) is a smoothed measure of (0B8], B C D.
Homogeneity: F,(af) = aF,(f) for all f € L(D) and a > 0.



Continuing, recall U, is a Cheeger minimiser in G(n,r,) =: G,,.

2, —d-1 an(Uh)

2 —d—1
HE(Gr) = ~ In(9n
W CHE(G) = ™ o & Fu(gn)

where we define g, := |U|"'1y: € L' (D) and for g € L'(D) we define

Fag) =yt [ [ o=

The g,, are bounded in L', and by a compactness result of Garcia Trillos
and Slep&ev 2016), there exist g € L!(D) and a subsequence of N with
gn, — g in L' as n goes to infinity along the subsequence. Then by a
Gamma-convergence result (also GT&S 2016),

)g(y)gttﬂdydx-

lim inf F},(gn) > F(g)
where F': L'(D) — R is homogeneous and for A C D, we have
F(14) =0|0pA|.
But g = 1,4/|A| for some A so F(g) = |0pA|/|A| > CHE(?) O



The largest component of G, := G(n,r,)
T

Let L(GG) be the number of vertices in the largest component of G.

The asymptotic behaviour of L(G,,) is governed by that of nrd

[note the average degree ~ nrdw,, where wy = vol. of unit ball]

If lim,, 0o n7% < Ao(d) then n=1L(G),) L 0asn — .
If nrd = A\ > Ao(d) then n=LL(Gp) — O(\) € (0, 00).

(Ac(d) is a percolation threshold, not known explicitly.)
This is called a giant component phenomenon.

If nrd — oo but nrd/(logn) — 0, then n — L(n) = I(Gy,) to first order.
[P. and Yang, in preparation]



Open problems (now G, := G(n,7,))

We know a,, CHE(G,,) - CHE(D) and a, MBIS(G,,) — MBIS(D) when
1> 1, > ((logn)/n)Y/e,

Can we extend this to when r, = ¢((logn)/n)"?, large ¢?
Or even to when r,, > n~ Y4 at least for MBIS?
(If n~ Y4 < r, < ((logn)/n)"/? then 1 < (n — L(G,)) < n, where

L(G) is the order of the largest component of G.)

Or to the k-nearest-neighbour graph on V,, where k = k(n) > logn?
(connect each vertex by an undirected edge to its k nearest neighbours).

Or to other point processes on D, e.g. a regular grid?
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