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Random geometric graphs (Penrose 2003)

Let D be a bounded region in Rd (or more generally, a d-dimensional
Riemannian manifold) with d ≥ 2.
Let X1, X2, . . . , Xn be points sampled randomly uniformly from D.

Aim: Learn about D from the sample, via the following graph.

Given r > 0, let G(n, r) be the weighted graph on vertex set
Vn := {X1, . . . Xn} with weights

Wxy := φ

� |x− y|
r

�

where φ(t) = 1[0,1](t), t ≥ 0, and | · | is Euclidean.

i.e., connect any two points of Vn at Euclidean distance at most rn.

[Could also consider non-uniform samples,
and other weight functions φ such as φ(t) = exp(−t2)]
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Isolated vertices of G(n, r)

Assume D ⊂ Rd open and connected. Also assume D has unit volume and
a Lipschitz boundary ∂D [this holds e.g. if ∂D is smooth or D is a cube].

Assume we have access to a large sample and can choose r = rn, rn → 0.
Then asymptotic (large-n) properties of G(n, rn) may be relevant.

Let I(G) denotes the number of isolated vertices of G,

E[I(G(n, rn)] ∼ n exp(−nωdr
d
n) as n → ∞. [ ωd := volume of unit ball]

So if ωdnr
d
n = a log n then

lim
n→∞

E[I(G(n, rn))] =

�
∞ if a < 1

0 if a > 1.
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Connectivity of G(n, r)

From above: if ωdnr
d
n = a log n [i.e., rn = (a log n/(nωd))

1/d] then

limn→∞ E[I(G(n, rn))] =

�
∞ if a < 1

0 if a > 1.
In fact it turns out that

lim
n→∞

P[G(n, rn) is connected] =

�
0 if a < 1

1 if a > 1

If ωdnr
d
n ≥ (1 + ε) log n, G(n, rn) is likely to be connected for large n.

Conversely, if D is not connected and rn → 0, then G(n, rn) will not be
connected for large n.
i.e. we can learn about connectivity of D from that of G(n, rn).

[In preparation with Xiaochuan Yang, exact limit of P[G(n, rn) connected].
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Optimal cuts of a (weighted) graph G = (V,W )

For U ⊂ V , set ∂G(U) :=
�

v∈U
�

w∈V \U Wvw and volG(U) := #(U)
#(V ) The

minimum bisection cost and cheeger constant (conductance) of G are

MBIS(G) := min
U⊂V :|U |=�|V |/2�

∂G(A)

CHE(G) = min

�
∂G(U)

volG(U)
: U ⊂ V, 0 < volG(U) ≤ 1/2

�

The denominator penalizes unbalanced cuts. [Alternatively could define
vol(U) by counting edges rather than vertices]
Uses: bounds on mixing times of random walk on graph, bounds on graph
laplacian; reasonable criteria for optimal cut.

Question: Do these quantities for G(n, rn) converge to analogous
quantities of interest for D?

5 / 14



Optimal cuts of a bounded domain D ⊂ Rd

Define the minimal bisection and Cheeger constant of D by

MBIS(D) := inf{|∂DA| : A ⊂ D, |A| = 1/2}

CHE(D) := inf

� |∂DA|
|A| : A ⊂ D, 0 < |A| ≤ |D|/2

�
,

|A| denotes the volume of A, |∂DA| denotes the perimeter of A within D,
i.e. the surface measure of A ∩D \A (where A means closure of A).

[Cheeger’s inequality: λ1 ≥ (CHE(D))2

4 , where λ1 is the first non-zero
eigenvalue of −� on D.]
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Can we learn about D from the sample Vn?

In particular, about CHE(D) from CHE(G(n, rn)), given (rn)n≥1?

Given U ⊂ Vn, we’ll use notation

∂n(U) := ∂G(n,rn)(U),

voln(U) := volG(n,rn)(U) = #(U)/n.

Also, assume that rn � 1 and (unless stated otherwise) that

nrdn � log n,

where an � bn or bn � an means (an/bn) → 0 as n → ∞.

Note: ∃c > 0: if nrdn ≤ c log n then G is not connected so CHE(G) = 0.
Need at least nrdn ≥ c log n to have any chance of learning anything from
CHE(G(n, rn)). But want rn small for computational reasons.
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Asymptotic upper bound for CHE(G)

CHE(G(n, rn)) = min
�

∂n(U)
voln(U) : U ⊂ Vn, 0 < voln(U) ≤ 1/2

�

Choose A ⊂ D to minimize |∂DA|/|A| subject to 0 < |A| ≤ 1
2 .

Let Un = Vn ∩A. By the Law of Large Numbers, voln(Un) → |A|. Also,

E[∂n(Un)] = n2

�

A

�

D\A
1[0,rn](|y − x|)dydx

∼ |∂DA|σn2rd+1
n ,

with σ := (1/2)
�
Rd x11[0,1](|x|)dx. [‘Surface tension’ of φ = 1[0,1]].

So assuming ∂n(Un) ∼ E[∂n(Un)], as n → ∞

lim supn−2r−d−1
n CHE(G(n, rn)) ≤ lim supn−2r−d−1

n

�
∂n(Un)

voln(Un)

�

=
σ|∂DA|
|A| = σCHE(D)
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Theorem (Garćıa Trillos et al. ‘16; Müller/P. ‘20)

[Recall CHE(D) := inf
�

|∂DA|
|A| : A ⊂ D, 0 < |A| ≤ |D|/2

�

CHE(G) = min
�

∂G(U)
volG(U) : U ⊂ V (G), 0 < volG(U) ≤ 1/2

�
]

Under our conditions (|D| = 1, ∂D Lipschitz, rn → 0, nrdn � log n), a.s.:

n−2r−d−1
n CHE(G(n, rn)) → σCHE(D). [already shown ≤]

If A ⊂ D is the (essentially) unique Cheeger minimizer, i.e. |A| < 1/2

and |∂DA|
|A| < ∂DA�

|A�| for all A� ⊂ D with |A��A| �= 0, then

n−1
�

x∈An

δx → Lebd|A weakly.

If A is not unique, we still have convergence on a subsequence.

Also n−2r−d−1
n MBIS(G(n, rn)) → σMBIS(D),

G. Trillos et al. needed the additional condition nr2n � (log n)3/2 if d = 2.

9 / 14



Sketch proof of lower bound

Let Un ⊂ Vn, n ≥ 1 be any sequence of Cheeger minimisers in
G(n, rn). Label points of Un ‘red’, points of Vn \ Un ‘green’.

Divide D into cubes (boxes) of side γnrn, where γn is a sequence of
constants with 1 � γn and n(γnrn)

d � log n.

WHP, each box contains about n(γnrn)
d points of Vn.

All the boxes must be ‘mostly red’ or ‘mostly green’.

Let U∗
n be the union of ‘mostly red’ boxes. Then

n−2r−d−1
n ∂n(Un) ≈ r−d−1

n

�

D

�

D
φ

� |x− y|
rn

�
|1U∗

n
(y)− 1U∗

n
(x)|dydx

=: Fn(1U∗
n
), where Fn(1B) is a smoothed measure of |∂B|, B ⊂ D.

Homogeneity: Fn(af) = aFn(f) for all f ∈ L1(D) and a > 0.
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Continuing, recall Un is a Cheeger minimiser in G(n, rn) =: Gn.

n2r−d−1
n CHE(Gn) = n2r−d−1

n

∂n(Un)

voln(Un)
≈ Fn(gn)

where we define gn := |U∗
n|−11U∗

n
∈ L1(D) and for g ∈ L1(D) we define

Fn(g) := r−d−1
n

�

D

�

D
φ

� |y − x|
rn

�
|g(y)− g(x)|dydx.

The gn are bounded in L1, and by a compactness result of Garcia Trillos
and Slepčev 2016), there exist g ∈ L1(D) and a subsequence of N with
gn → g in L1 as n goes to infinity along the subsequence. Then by a
Gamma-convergence result (also GT&S 2016),

lim inf Fn(gn) ≥ F (g)

where F : L1(D) → R is homogeneous and for A ⊂ D, we have

F (1A) = σ|∂DA|.

But g = 1A/|A| for some A so F (g) = |∂DA|/|A| ≥ CHE(F ). �
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The largest component of Gn := G(n, rn)

Let L(G) be the number of vertices in the largest component of G.

The asymptotic behaviour of L(Gn) is governed by that of nrdn
[note the average degree ∼ nrdnωd, where ωd = vol. of unit ball]

If limn→∞ nrdn < λc(d) then n−1L(Gn)
P−→ 0 as n → ∞.

If nrdn = λ > λc(d) then n−1L(Gn)
P−→ θ(λ) ∈ (0,∞).

(λc(d) is a percolation threshold, not known explicitly.)
This is called a giant component phenomenon.

If nrdn → ∞ but nrdn/(log n) → 0, then n− L(n) = I(Gn) to first order.
[P. and Yang, in preparation]
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Open problems (now Gn := G(n, rn))

We know anCHE(Gn) → CHE(D) and anMBIS(Gn) → MBIS(D) when
1 � rn � ((log n)/n)1/d.

Can we extend this to when rn = c((logn)/n)1/d, large c?

Or even to when rn � n−1/d, at least for MBIS?
(If n−1/d � rn � ((log n)/n)1/d then 1 � (n− L(Gn)) � n, where
L(G) is the order of the largest component of G.)

Or to the k-nearest-neighbour graph on Vn where k = k(n) � log n?
(connect each vertex by an undirected edge to its k nearest neighbours).

Or to other point processes on D, e.g. a regular grid?
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