Equivariant Neural Networks for Inverse Problems

Matthias J. Ehrhardt
Department of Mathematical Sciences, University of Bath, UK

$$
\text { July 29, } 2021
$$

Joint work with:
F. Sherry, C. Etmann, C.-B. Schönlieb (all Cambridge, UK),
E. Celledoni, B. Owren (both NTNU, Norway)

Outline

\author{

1) Inverse Problems and Machine Learning
}

$$
\min _{x} \frac{1}{2}\|A x-y\|_{2}^{2}+\lambda \mathcal{R}(x)
$$

2) Equivariance and Neural Networks

3) Numerical Results for CT and MRI

Celledoni et al., Equivariant neural networks for inverse problems, to appear in Inverse Problems, 2021

Inverse Problems and Machine Learning

Inverse problems

$$
A u=b
$$

u : desired solution
b : observed data
A : mathematical model
Goal: recover U given b

Inverse problems

$A u=b$

u : desired solution
b : observed data
A : mathematical model

Goal: recover U given b

- Radon / X-ray transform (e.g. CT, PET) $A u(L)=\int_{L} u(x) d x$

Inverse problems

$A u=b$

u : desired solution
b : observed data
A : mathematical model

Goal: recover U given b

- Fourier transform (e.g. MRI) $A u(k)=\int u(x) \exp (-i k x) d x$

What is the problem with inverse problems?

- $A u(L)=\int_{L} u(x) d x$

What is the problem with inverse problems?

- $A u(L)=\int_{L} u(x) d x$

Hadamard (1902): We call an inverse problem $A u=b$ well-posed if
(1) a solution u^{*} exists
(2) the solution u^{*} is unique
(3) u^{*} depends continuously on data b.

Otherwise, it is called ill-posed.

Jacques Hadamard

Most interesting problems are ill-posed.

How to solve inverse problems?

Variational regularization

Approximate a solution u^{*} of $A u=b$ via

$$
\hat{u} \in \arg \min _{u}\{\mathcal{D}(u)+\lambda \mathcal{R}(u)\}
$$

\mathcal{D} measures fidelity between $A u$ and b, related to noise statistics
\mathcal{R} regularizer penalizes unwanted features and ensures stability
$\lambda \geq 0$ regularization parameter balances fidelity and regularization

Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018

How to solve inverse problems?

Variational regularization

Approximate a solution u^{*} of $A u=b$ via

$$
\hat{u} \in \arg \min _{u}\{\mathcal{D}(u)+\lambda \mathcal{R}(u)\}
$$

- squared L^{2} norm: $\mathcal{R}(u)=\frac{1}{2}\|u\|_{2}^{2}$
- squared H^{1} semi-norm: $\mathcal{R}(u)=\frac{1}{2}\|\nabla u\|_{2}^{2}$
- Total Variation $\mathcal{R}(u)=\|\nabla u\|_{1}$ Rudin, Osher, Fatemi 1992
- Total Generalized Variation $\mathcal{R}(u)=\inf _{v}\|\nabla u-v\|_{1}+\beta\|\nabla v\|_{1}$ Bredies, Kunisch, Pock 2010

Noisy image

TGV² denoised image

How to ACTUALLY solve inverse problems?

$$
\hat{u} \in \arg \min _{u}\{\mathcal{D}(u)+\lambda \mathcal{R}(u)\}
$$

Forward-Backward Splitting Beck and Teboulle 2009

$$
u^{k+1}=\operatorname{prox}_{\tau^{k} \lambda \mathcal{R}}\left(u^{k}-\tau^{k} \nabla \mathcal{D}\left(u^{k}\right)\right)
$$

Solution $\Phi(b):=\lim _{k \rightarrow \infty} u^{k}$.
Choose $\tau^{k}, \lambda: \Phi(b)=\hat{u} \rightarrow u^{*}$ if $\lambda \rightarrow 0$
Proximal operator Moreau 1962

$$
\operatorname{prox}_{f}(z):=\arg \min _{u} \frac{1}{2}\|u-z\|^{2}+f(u)
$$

How to ACTUALLY solve inverse problems?

$$
\hat{u} \in \arg \min _{u}\{\mathcal{D}(u)+\lambda \mathcal{R}(u)\}
$$

Forward-Backward Splitting Beck and Teboulle 2009

$$
u^{k+1}=\operatorname{prox}_{\tau^{k} \lambda \mathcal{R}}\left(u^{k}-\tau^{k} \nabla \mathcal{D}\left(u^{k}\right)\right)
$$

Solution $\Phi(b):=\lim _{k \rightarrow \infty} u^{k}$.
Choose $\tau^{k}, \lambda: \Phi(b)=\hat{u} \rightarrow u^{*}$ if $\lambda \rightarrow 0$
Proximal operator Moreau 1962

$$
\operatorname{prox}_{f}(z):=\arg \min _{u} \frac{1}{2}\|u-z\|^{2}+f(u)
$$

Learned gradient descent Adler and Öktem 2017

$$
u^{k+1}=\widehat{\operatorname{prox}}_{i}\left(u^{k}, \nabla \mathcal{D}\left(u^{k}\right)\right)
$$

Solution $\Phi(b):=u^{K}$, "small" $K \in \mathbb{N}$.
Learn $\widehat{\text { prox }}_{i}: \Phi(b) \approx u^{*}$

Learned proximal gradient descent with memory

- memory s

Equivariance and Neural Networks

What happens when data is rotated?

$$
\Phi(b)=u
$$

What happens when data is rotated?

$\Phi(b)=u$

What happens when data is rotated?

How to get "equivariant" mappings?

Example: R_{θ} rotation by θ, Φ denoising network

$$
\Phi\left(R_{\theta} b\right)=R_{\theta} \Phi(b)
$$

How to get "equivariant" mappings?

Example: R_{θ} rotation by θ, Φ denoising network

$$
\Phi\left(R_{\theta} b\right)=R_{\theta} \Phi(b)
$$

- data augmentation: e.g. $\left(b_{i}, u_{i}\right)_{i}$ becomes $\left(R_{\theta} b_{i}, R_{\theta} u_{i}\right)_{i, \theta}$
\checkmark simple to implement for image-based tasks (e.g. denoising, image segmentation etc)
X potentially computationally costly since training data is larger
no guarantees this will translate to test data not always easy/possible (for inverse problems only viable in simulations or if data is not paired (semi-supervised training))

How to get "equivariant" mappings?

Example: R_{θ} rotation by θ, Φ denoising network

$$
\Phi\left(R_{\theta} b\right)=R_{\theta} \Phi(b)
$$

- data augmentation: e.g. $\left(b_{i}, u_{i}\right)_{i}$ becomes $\left(R_{\theta} b_{i}, R_{\theta} u_{i}\right)_{i, \theta}$
\checkmark simple to implement for image-based tasks (e.g. denoising, image segmentation etc)

Xpotentially computationally costly since training data is larger

x
Xno guarantees this will translate to test data not always easy/possible (for inverse problems only viable in simulations or if data is not paired (semi-supervised training))

- equivariance by design (this talk!)
$\sqrt{ }$ mathematical guarantees
X not trivial to do
Equivariant neural networks have been studied a lot for segmentation, classification, denoising etc Bekkers et al. 2018,
Weiler and Cesa 2019, Cohen and Welling 2016, Dieleman et al. 2016, Sosnovik et al. 2019, Worall and Welling 2019, ...

What is equivariance?

Definition (Group G)

- associativity: $\forall g_{1}, g_{2}, g_{3} \in G:\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$,
- identity: $\exists e \in G \forall g \in G: e \cdot g=g$
- invertibility: $\forall g \in G \exists g^{-1} \in G: g^{-1} \cdot g=e$

What is equivariance?
Definition (Group G)

- associativity: $\forall g_{1}, g_{2}, g_{3} \in G:\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$,
- identity: $\exists e \in G \forall g \in G: e \cdot g=g$
- invertibility: $\forall g \in G \exists g^{-1} \in G: g^{-1} \cdot g=e$

Definition (G acts on X)

- group action: $G \times X \rightarrow X, \quad(g, x) \mapsto g \cdot x$
- identity: $e \cdot x=x$
- compatibility: $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} \cdot g_{2}\right) \cdot x$

What is equivariance?

Definition (Group G)

- associativity: $\forall g_{1}, g_{2}, g_{3} \in G:\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$,
- identity: $\exists e \in G \forall g \in G: e \cdot g=g$
- invertibility: $\forall g \in G \exists g^{-1} \in G: g^{-1} \cdot g=e$

Definition (G acts on X)

- group action: $G \times X \rightarrow X, \quad(g, x) \mapsto g \cdot x$
- identity: $e \cdot x=x$
- compatibility: $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} \cdot g_{2}\right) \cdot x$

Definition (Equivariance) G acts on X and $Y, \Phi: X \rightarrow Y$ is called equivariant if for all $g \in G, x \in X$

$$
g \cdot \Phi(x)=\Phi(g \cdot x)
$$

Group actions on functions, e.g. $X=L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$

domain: $(g \cdot u)(x)=u\left(g^{-1} \cdot x\right)$
translations, rotations, affine transformations

Example: $G=\left(\mathbb{R}^{n},+\right)$ may act on X via

- $(g \cdot u)(x)=u(x-g)$
- $(g \cdot u)(x)=u(x \exp (g))$, if $n=1$

Group actions on functions, e.g. $X=L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$
domain: $(g \cdot u)(x)=u\left(g^{-1} \cdot x\right)$
translations, rotations, affine transformations

Example: $G=\left(\mathbb{R}^{n},+\right)$ may act on X via

- $(g \cdot u)(x)=u(x-g)$
- $(g \cdot u)(x)=u(x \exp (g))$, if $n=1$
range: $(g \cdot u)(x)=g \cdot u(x)$
Example: $G=\left(\mathbb{R}^{m},+\right)$ may act on X via
- $(g \cdot u)(x)=u(x)+g$

Group actions on functions, e.g. $X=L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$
domain: $(g \cdot u)(x)=u\left(g^{-1} \cdot x\right)$
translations, rotations, affine transformations

Example: $G=\left(\mathbb{R}^{n},+\right)$ may act on X via

- $(g \cdot u)(x)=u(x-g)$
- $(g \cdot u)(x)=u(x \exp (g))$, if $n=1$
range: $(g \cdot u)(x)=g \cdot u(x)$
Example: $G=\left(\mathbb{R}^{m},+\right)$ may act on X via
- $(g \cdot u)(x)=u(x)+g$
both domain and range: $(g \cdot u)(x)=g \cdot u\left(g^{-1} \cdot x\right)$

Acting on domain and range: $(g \cdot u)(x)=g \cdot u\left(g^{-1} \cdot x\right)$

Acting on domain and range: $(g \cdot u)(x)=g \cdot u\left(g^{-1} \cdot x\right)$

- $\bar{G}=\mathbb{R}^{n} \rtimes H, \quad H$ subgroup of the general linear group $G L(n)$
- $g \cdot x=R x+t, g=(t, R) \in \bar{G}, t \in \mathbb{R}^{n}, R \in H$
- $\pi: H \rightarrow G L(m)$ representation of H
- $(g \cdot u)(x)=\pi(R) u\left(R^{-1}(x-t)\right)$

Acting on domain and range: $(g \cdot u)(x)=g \cdot u\left(g^{-1} \cdot x\right)$

- $\bar{G}=\mathbb{R}^{n} \rtimes H, \quad H$ subgroup of the general linear group $G L(n)$
- $g \cdot x=R x+t, g=(t, R) \in \bar{G}, t \in \mathbb{R}^{n}, R \in H$
- $\pi: H \rightarrow G L(m)$ representation of H
- $(g \cdot u)(x)=\pi(R) u\left(R^{-1}(x-t)\right)$

Examples

- Translations: $H=\{e\}$
- Roto-Translations: $H=S O(n)$
- Finite Roto-Translations $H=Z_{M}$ (finite subgroup of $\mathrm{SO}(2)$)

Acting on domain and range: $(g \cdot u)(x)=g \cdot u\left(g^{-1} \cdot x\right)$

- $\bar{G}=\mathbb{R}^{n} \rtimes H, \quad H$ subgroup of the general linear group $\mathrm{GL}(n)$
- $g \cdot x=R x+t, g=(t, R) \in \bar{G}, t \in \mathbb{R}^{n}, R \in H$
- $\pi: H \rightarrow G L(m)$ representation of H
- $(g \cdot u)(x)=\pi(R) u\left(R^{-1}(x-t)\right)$

Examples

- Translations: $H=\{e\}$
- Roto-Translations: $H=S O(n)$
- Finite Roto-Translations $H=Z_{M}$ (finite subgroup of $\mathrm{SO}(2)$)
- Example: u vector-field, move and transform vectors

How to get "equivariant" networks?

Proposition Let G be any group.

- The composition $\Phi \circ \psi$ is equivariant if Φ and ψ are equivariant.
- The sum $\Phi+\Psi$ is equivariant if Φ and Ψ are equivariant.
- The identity $\Phi(u)=u$ is equivariant.

How to get "equivariant" networks?

Proposition Let G be any group.

- The composition $\Phi \circ \psi$ is equivariant if Φ and Ψ are equivariant.
- The sum $\Phi+\Psi$ is equivariant if Φ and Ψ are equivariant.
- The identity $\Phi(u)=u$ is equivariant.

Outlook (linearity) There are non-trivial \bar{G}-equivariant linear operators.

How to get "equivariant" networks?

Proposition Let G be any group.

- The composition $\Phi \circ \psi$ is equivariant if Φ and Ψ are equivariant.
- The sum $\Phi+\Psi$ is equivariant if Φ and Ψ are equivariant.
- The identity $\Phi(u)=u$ is equivariant.

Outlook (linearity) There are non-trivial \bar{G}-equivariant linear operators.

Proposition (bias) Let $\Phi: X \rightarrow X,(\Phi u)(x)=u(x)+b(x)$. For any group G, Φ is equivariant if b is invariant, i.e. $g \cdot b=b$.

How to get "equivariant" networks?

Proposition Let G be any group.

- The composition $\Phi \circ \psi$ is equivariant if Φ and Ψ are equivariant.
- The sum $\Phi+\Psi$ is equivariant if Φ and Ψ are equivariant.
- The identity $\Phi(u)=u$ is equivariant.

Outlook (linearity) There are non-trivial \bar{G}-equivariant linear operators.

Proposition (bias) Let $\Phi: X \rightarrow X,(\Phi u)(x)=u(x)+b(x)$. For any group G, Φ is equivariant if b is invariant, i.e. $g \cdot b=b$.

Outlook (nonlinearity) There are \bar{G}-equivariant nonlinearities.

How to get "equivariant" networks?

Proposition Let G be any group.

- The composition $\Phi \circ \Psi$ is equivariant if Φ and Ψ are equivariant.
- The sum $\Phi+\Psi$ is equivariant if Φ and Ψ are equivariant.
- The identity $\Phi(u)=u$ is equivariant.

Outlook (linearity) There are non-trivial \bar{G}-equivariant linear operators.

Proposition (bias) Let $\Phi: X \rightarrow X,(\Phi u)(x)=u(x)+b(x)$. For any group G, Φ is equivariant if b is invariant, i.e. $g \cdot b=b$.

Outlook (nonlinearity) There are \bar{G}-equivariant nonlinearities.
We can construct \bar{G}-equivariant neural networks in the usual way:

- layers $\Phi=\Phi_{n} \circ \cdots \circ \Phi_{1}$
- $\Phi(u)=\sigma(A u+b)$
- ResNet $\Phi(u)=u+\sigma(A u+b)$

Equivariant linear functions $\left(\pi_{X} \equiv i d\right)$

In a nutshell: Linear \bar{G}-equivariant operators are convolutions with a kernel satisfying an additional constraint.

Equivariant linear functions $\left(\pi_{X} \equiv i d\right)$

In a nutshell: Linear \bar{G}-equivariant operators are convolutions with a kernel satisfying an additional constraint.

Theorem paraphrasing e.g. Weiler and Cesa 2019
Let X, Y be function spaces, e.g. $X=L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$,
$Y=L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{M}\right)$. The linear operator $\Phi: X \rightarrow Y$,

$$
\Phi f(x)=\int K(x, y) f(y) d y
$$

with $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{M \times m}$ is \bar{G}-equivariant iff there is a k such that

$$
\Phi f(x)=\int k(x-y) f(y) d y
$$

and k is H-invariant, i.e. for all $R \in H, x \in \mathbb{R}^{n}: k(R x)=k(x)$.

Equivariant nonlinearities $\left(\pi_{X} \equiv i d\right)$

In a nutshell: There are \bar{G}-equivariant nonlinearities.

Equivariant nonlinearities $\left(\pi_{X} \equiv i d\right)$

In a nutshell: There are \bar{G}-equivariant nonlinearities.

Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be any non-linear function.

- Norm nonlinearity $\Psi_{N}: X \rightarrow X$,

$$
\left[\Psi_{N}(u)\right](x)=u(x) \cdot \psi(\|u(x)\|)
$$

- Pointwise and componentwise nonlinearity $\Psi_{P}: X \rightarrow X$,

$$
\left[\Psi_{P}(u)\right](x)=\vec{\psi}(u(x)), \quad \vec{\psi}(x)_{i}=\psi\left(x_{i}\right)
$$

Equivariant nonlinearities $\left(\pi_{X} \equiv i d\right)$

In a nutshell: There are \bar{G}-equivariant nonlinearities.

Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be any non-linear function.

- Norm nonlinearity $\Psi_{N}: X \rightarrow X$,

$$
\left[\Psi_{N}(u)\right](x)=u(x) \cdot \psi(\|u(x)\|)
$$

- Pointwise and componentwise nonlinearity $\Psi_{P}: X \rightarrow X$,

$$
\left[\Psi_{P}(u)\right](x)=\vec{\psi}(u(x)), \quad \vec{\psi}(x)_{i}=\psi\left(x_{i}\right)
$$

Lemma Both nonlinearities are \bar{G}-equivariant.

Equivariance and inverse problems

- inverse problem $A u=b$, solution operator: $\Phi: Y \rightarrow X$
- Hope $\Phi \circ A$ is equivariant, e.g. $R_{\theta} \circ \Phi \circ A=\Phi \circ A \circ R_{\theta}$

Equivariance and inverse problems

- inverse problem $A u=b$, solution operator: $\Phi: Y \rightarrow X$
- Hope $\Phi \circ A$ is equivariant, e.g. $R_{\theta} \circ \Phi \circ A=\Phi \circ A \circ R_{\theta}$
- Even if J is invariant, $\Phi \circ A$ is not generally equivariant
- Example: TV and inpainting

Equivariance and inverse problems

- inverse problem $A u=b$, solution operator: $\Phi: Y \rightarrow X$
- Hope $\Phi \circ A$ is equivariant, e.g. $R_{\theta} \circ \Phi \circ A=\Phi \circ A \circ R_{\theta}$
- Even if J is invariant, $\Phi \circ A$ is not generally equivariant
- Example: TV and inpainting

What about well-behaved kernel: compressed sensing?

Invariant functional implies equivariant proximal operator

Theorem Celledoni et al. 2021

- G acts isometrically on $X(\|g \cdot u\|=\|u\|)$
- $J: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is invariant $(J(g \cdot u)=J(u))$
- J has well-defined single-valued proximal operator

Then prox, is equivariant, i.e for all $u \in X$ and $g \in G$

$$
\operatorname{prox}_{J}(g \cdot u)=g \cdot \operatorname{prox}_{J}(u) .
$$

Invariant functional implies equivariant proximal operator

Theorem Celledoni et al. 2021

- G acts isometrically on $X(\|g \cdot u\|=\|u\|)$
- $J: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is invariant $(J(g \cdot u)=J(u))$
- J has well-defined single-valued proximal operator

Then prox, is equivariant, i.e for all $u \in X$ and $g \in G$

$$
\operatorname{prox}_{J}(g \cdot u)=g \cdot \operatorname{prox}_{J}(u) .
$$

- Proof does generalize to variatial regularization with L^{2}-datafit if A is equivariant
- For example the total variation (and higher order variants) is invariant to rigid motion

Numerical Results

Datasets

- CT: LIDC-IDRI data set, $5000+200+1000$ images, 50 views

- MR: FastMRI data set, $5000+200+1000$ images

\mathcal{S}

$\mathcal{F}^{-1}\left(\mathcal{S}^{*} y\right)$

CT Results

Equivariant $=$ roto-translations; Ordinary $=$ translations
Equivariant improves upon Ordinary:

- higher SSIM and PSNR
- fewer artefacts and finer details

CT Results

Equivariant $=$ roto-translations; Ordinary $=$ translations
Equivariant improves upon Ordinary:

- small training sets
- unseen orientations

Generalisation performance of the learned methods

MR Results

- similar observations in MR (as in CT); smaller difference
- results for both methods better on rotated images

MR Results: Smoothing

- smoothing helps: easier to train on smoother images

Performance of the learned methods on upright images

Conclusions and Outlook

Conclusions

- no need for data augmentation: mathematically guaranteed equivariant neural networks exist (though some extra work is needed)
- solution operators may not be equivariant, but proximal operators usually are equivariant
- computationally efficient: as convolutional networks at run time
- useful for many applications: fewer data and robustness

Conclusions and Outlook

Conclusions

- no need for data augmentation: mathematically guaranteed equivariant neural networks exist (though some extra work is needed)
- solution operators may not be equivariant, but proximal operators usually are equivariant
- computationally efficient: as convolutional networks at run time
- useful for many applications: fewer data and robustness

Future work

- other groups, e.g. scaling of itensities
- other inverse problems, e.g. compressed sensing or trivial kernel
- higher dimensions e.g. 3D or dynamic inverse problems

