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Motivation

Motion blur estimation and restoration are fundamental problems in
image processing and computer vision.

Motion blur is produced by unwanted camera shake during recording
or by fast moving objects in the scene.

Consequences: image quality degradation
I Aesthetic blurry images
I Performance degradation of subsequent computer vision tasks:

tracking, detection, classification, etc.
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Objectives

We focus on the realistic non-uniform motion blur setting

Major goal: provide dense, accurate estimates of non-uniform motion
fields via local kernel estimation. Estimate kernels at the pixel level.

Secondary goal: once the motion field has been estimated, perform
non-blind image deblurring.

Image deblurring is tackled here to validate our non-uniform kernel
estimation method, by comparing to state-of-the-art deblurring
techniques.
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Related work: non-uniform motion kernel estimation
[Sun 2015]

Predefined set of linear kernels of different lengths and orientations.
Deep CNN to predict the probability of each kernel for each patch.
Smooth dense motion blur kernels field via MRF regularization.
Motion blur removed using a non-uniform blur model with EPLL prior.

Sun, Cao, Xu, Ponce. Learning a CNN for non-uniform motion blur removal. CVPR, 2015.
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Related work: non-uniform motion kernel estimation
[Gong 2017]

Estimate the motion flow from the blurred image using a deep FCNN.
Train the FCN with simulated linear kernels to generate synthetic
blurred-image / motion-flow pairs.
Deblur with conventional non-blind method (`2 data fit, EPLL prior).

Limitations of [Sun 2015] and [Gong 2017]: Limited to line-shaped blur
kernels, inaccurate and unrealistic in most scenarios.

Gong, Yang, Liu, Zhang, Reid, Shen, Van Den Hengel, Shi. From motion blur to motion flow: a deep learning solution for
removing heterogeneous motion blur. CVPR, 2017.
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Related work: Kernel Prediction Networks

Recently used, among others, for burst denoising, optical flow estimation
and frame interpolation, stereo and video prediction.

Burst denoising [Mildenhall 2018]:

The network produces a set of kernels at each pixel, which are then
used to produce a pixel average in the neighborhood.
Significant memory and computational costs: limited to compute for
each pixel N = 8 kernels of size K = 5, therefore limiting the ability
to denoise over frames with larger relative motion.

Mildenhall, Barron, Chen, Sharlet, Ng, Carroll. Burst denoising with kernel prediction networks. CVPR, 2018.

6 / 26



Related work: Kernel Prediction Networks

Burst denoising [Xia 2019]:

To overcome this limitation, they propose a basis prediction network
that given an input burst, predicts a set of global basis kernels and
the corresponding per-pixel mixing coefficients.
Kernel size limited to 15× 15, and total number of basis kernels
limited to 90.

Xia, Perazzi, Gharbi, Sunkavalli, Chakrabarti. Basis prediction networks for effective burst denoising with large kernels. ArXiv
preprint, 2019.
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Proposed approach

We propose to estimate the non-uniform motion blur kernels using a KPN.

For each blurry image we estimate:
A set of basis motion kernels for the whole image.
A set of mixing coefficients specific to each pixel.

Our work bears many similarities with [Xia 2019] kernel prediction strategy.

Major differences:
Application: non-uniform motion blur estimation.
The kernels are learned directly to solve the inverse problem, whereas
we learn the kernels to fit the forward model.
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Non-uniform motion blur degradation model

Sharp image u ∈ RH×W

For each pixel i = 1, . . . ,H ×W , a blur kernel ki ∈ RK×K

Kernels ki are non-negative and ‖ki‖1 = 1

The blurry image v is the result of applying the per-pixel operation:

vi = 〈unn(i), ki〉+ ni .

Taking into account sensor saturation and gamma correction,

vi = R
(
〈unn(i), ki〉+ ni

)1/γ
,

where (typical) γ = 2.2 and R(x) is a smooth approximation of min(x , 1):

R(x) = x − 1
a log

(
1 + ea(x−1)

)
.
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Low-rank approximation

Full motion field of per-pixel kernels: very high-dimensional space
(K 2HW ) (hard and computationally intractable)

Low-rank modeling (assume spatial redundancy): ki '
∑B

b=1 mb
i kb.

I The B basis elements kb are image specific
I The mixing coefficients mb

i are non-negative and
∑B

b=1 mb
i = 1.

Estimation problem of dimension B(K 2 + HW ).

Forward model:

vi = R
(
〈unn(i),

B∑
b=1

mb
i kb〉+ ni

)1/γ
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Objective loss

We aim to minimize the following two term loss:

Lreblur + Lkernel .

At training time, for the synthetic dataset, we have:
I The sharp image uGT

I The blured image vGT

I The ground truth kernels and mixing coefficients that were applied to
each pixel, kGT

i .
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Reblur loss

Given a blurry image vGT, we aim to find the global kernel basis {kb} and
per-pixel mixing coefficients {mb} that minimize

Lreblur =
∑
i
wi
(
vGT
i − vi

)2
,

where
wi is a weight inversely proportional to the number of pixels affected
with the same ground truth blur kernel kGT

i
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Kernel Loss

Given the ground truth per-pixel blur kernels kGT
i , the computed kernel

basis {kb} and mixing coefficients {mb}, the kernel loss is defined as:

Lkernel =
∑
i
wi

∥∥∥∥∥
B∑

b=1
mb

i kb − kGT
i

∥∥∥∥∥
p

p

.
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Synthetic training database generation procedure

To build a dataset of tuples (uGT, vGT, {k}GT, {m}GT), we make use of:
A function that generates “camera shake" random kernels by using
the physiological hand tremor data of [Gavant 2011][Delbracio 2015]
The ADE20K image dataset: annotated images of segmented scenes.

Gavant, Alacoque, Dupret, David. A physiological camera shake model for image stabilization systems. SENSORS, IEEE, 2011.
Delbracio, Sapiro. Removing Camera Shake via Weighted Fourier Burst Accumulation. TIP, 2015.
Zhou, Zhao, Puig, Fidler, Barriuso, Torralba. Scene Parsing through ADE20K Dataset. CVPR, 2017.
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Synthetic training database generation procedure

1. Sample an image uGT from ADE20K
2. Sample a kernel k1

GT generated with [Delbracio 2015]
3. Convolve uGT with k1

GT

4. If the image contains segmented objects,
4.1 sort a new kernel k2

GT

4.2 Convolve the segmented region of u with k2
GT

5. Repeat (4) until no more segmented objects are present in uGT.

Return: sharp and blurred images uGT, vGT, kernels kn
GT with associated

masks.
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Synthetic training database generation procedure
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Implementation details

Parameters
Number of basis kernels B = 25
Kernel size: K × K = 33× 33

Training pipeline
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Implementation details

Architecture
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Experiments
Non-uniform motion blur image datasets

Synthetic images datasets

State-of-the-art deblurring networks are mostly trained with datasets that
synthesize realistic motion blur averaging several short exposure frames.

GoPro [Nah 2017]: first one of this kind, widely used both for training
and as a benchmark
DVD [Su 2017]: significantly reduced ghosting, but noticeable
compression artifacts.

Nah, Kim, Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. CVPR 2017.
Su, Delbracio, Wang, Sapiro, Heidrich, Wang. Deep video deblurring for hand-held cameras. CVPR 2017.
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Experiments
Non-uniform motion blur image datasets

Real images datasets

[Lai 2016]: real (and synthetic) datasets, usually used for evaluation
purposes
[Köhler 2012]: reduced set of example images with (slightly)
non-uniform blur originating from real camera trajectories
Realblur [Rim 2020]: two cameras shoot at the same time. One
camera captures a blurred image with a low shutter speed, the other
captures a GT image with a high shutter speed.

Lai, Huang, Hu, Ahuja, Yang. A comparative study for single image blind deblurring. CVPR, 2016.
Köhler, Hirsch, Mohler, Schölkopf, Harmeling. Recording and playback of camera shake: Benchmarking blind deconvolution with
a real-world database. ECCV, 2012.
Rim, Lee, Won, Cho. Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms. ECCV, 2020.
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Experiments
Results

To validate the proposed non-uniform kernel estimation method we
perform deblurring using a modified Richardson-Lucy algorithm based on
[Whyte, 2014]:

Adapted to spatially variant blur

Deals separately with saturated
and unsaturated pixels

Includes TV regularization
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Experiments: basis kernels selection and mixing coefficients
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Experiments: non-uniform motion blur kernel estimation
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Experiments: comparison with kernel estimation-based
deblurring methods
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Experiments: comparison to state-of-the-art motion
deblurring methods
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Example of other applications of motion blur kernel
estimation: motion segmentation
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