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Motivation: likelihood-free Bayesian inference

Setting: Generative model with intractable prior and likelihood
» Parameters x ~ myx
» Datay ~ myx(+[x)
» We can easily simulate (x',y') ~ mx vy

Goal: Sample from the posterior mxjy—y- for any y*

Applications: Geophysical data assimilation (ensemble filtering),
parameter inference in stochastic models

105 120 195°E

Lorenz-63 system Numerical weather prediction
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Motivation: likelihood-free Bayesian inference

Setting: Generative model with intractable prior and likelihood
» Parameters x ~ mx
» Datay ~ myx(-[x)
» We can easily simulate (x',y') ~ mx y

Goal: Estimate mutual information /(X; Y)

Application: Bayesian optimal experimental design

/(X; Y) = ]EY [DKL("TX\Y || 7Tx)]
= Ey x[log 7(x|y) — log 7(x)] = Ey x[log 7(y[x) — log 7(y)]

= Need to estimate conditional and marginal densities over a range of
values of X and Y
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Link these goals to transport

» A transport map S induces a deterministic coupling between a
target distribution 7 and a reference distribution 7

» Generate cheap and independent samples: z~7n < S i(z) ~ 7
» Estimate the target density: (x) = Sin(x) == n o S(x) |detVS(x)|

densities samples
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Monotone triangular transport maps

Specifically, consider the Knothe—Rosenblatt (KR) rearrangement

5;(X1)
S(X) _ S (.Xl,Xg)
SI(x1, X0, . .\ Xd)

@ Monotone (8¢xSk > 0) triangular map S satisfying Sym = 7; exists
and is unique under mild conditions on T and n

Easily invertible, with detVS(x) is tractable

Each component S¥ characterizes one marginal conditional of 7

© 0

TX = TX T X X1 " Xy X, X1

© The KR map is a limit of optimal transport maps obtained under
anisotropic quadratic cost, e.g., c¢(x,z) = 2.0, " 1(x; — z)? as
t — 0 [Carlier et al. 2009]
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Conditional density estimation and simulation

» Given joint prior model my x for parameters X € R”, data Y € R™:
seek the KR map S that pushes my x to 1z, .z, == N(0, ly+n)
» The KR map immediately has a block structure

Sy
X = [ sxiyx) ]

which suggests two properties of the lower block:
S* pushes my x to N(0,1,)
£ SY(y", €) pushes Txjy—y+ to N(0, 1)
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Conditional density estimation and simulation

» Given joint prior model my x for parameters X € R”, data Y € R™:
seek the KR map S that pushes my x to 1z, .z, == N(0, ly+n)
» The KR map immediately has a block structure

Sy
X = [ sxiyx) ]

which suggests two properties of the lower block:
S* pushes my x to N(0,1,)
¢ SX(y*,ﬁ) pushes mxy_y« to N(0,1,)

@ Approximate the conditional density:

7rX|Y:y* = SX(y*, )ﬁN(O, In)
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Conditional density estimation and simulation

» Given joint prior model my x for parameters X € R”, data Y € R™:
seek the KR map S that pushes my x to 1z, .z, == N(0, ly+n)
» The KR map immediately has a block structure

Sy
X = [ sxiyx) ]

which suggests two properties of the lower block:
S* pushes my x to N(0,1,)
¢ SX(y*,ﬁ) pushes mxy_y« to N(0,1,)

@ Sample the conditional distribution 7y y_,- with a single map:

Solve S¥(y*,x') = ¢' for x' given &' ~ N(0,1,)
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Conditional density estimation and simulation

» Given joint prior model my x for parameters X € R”, data Y € R™:
seek the KR map S that pushes my x to 1z, .z, == N(0, ly+n)

» The KR map immediately has a block structure

SV(y)

Sy, x) = ,
(y X) [ SX(y' X)

which suggests two properties of the lower block:

S* pushes my x to N(0,1,)

£ SY(y", €) pushes Tx|y—y- to N(0, 1)

© Sample the conditional via a composed map T that pushes forward
Ty X 1O x|y —y+:

Evaluate T(y,x) = S*(y", ) o S¥(y,x)
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A general recipe

» Estimate the triangular map S (e.g., in some parameterized family)
from (y', x")_; ~ Ty x

» Use relevant parts of the estimated map to generate conditional
samples or to approximate relevant conditional (or marginal) densities
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A general recipe

» Estimate the triangular map S (e.g., in some parameterized family)
from (y', x")_; ~ Ty x

» Use relevant parts of the estimated map to generate conditional
samples or to approximate relevant conditional (or marginal) densities

Many applications of this approach:
Likelihood-free/simulation-based inference

v

v

Optimal experimental design and MI estimation

Nonlinear filtering (ensemble Kalman filter < linear S(y, x); see
generalizations in [Spantini et al. arXiv:1907.00389])

Triangular maps are the building block of autoregressive normalizing
flows in machine learning. . .

v

v
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Plan for the rest of talk

Some underlying methodological questions:

© How to approximate triangular transport maps?

© Properties of the optimization problem arising in transport map
estimation

© The unreasonable effectiveness of composed maps for conditional
simulation
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Topic #1: approximation of triangular maps

» Consider triangular maps on bounded domains (e.g., [0, 1]9)

» Main results:

» If both the reference and target densities f,,, f; are analytic, the
Knothe—Rosenblatt map T is analytic

» T can be approximated with rational functions or deep RelLU networks,
via constructions that guarantee monotonicity and bijectivity

» Explicit a priori descriptions of ansatz spaces

» Exponential convergence rates
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Regularity of 7

{zeC: dist(z,[-1,1]) < r}

=
i

N
a

Theorem (informal, [ZM20])

Let fy, fr - XS B, — C be analytic and bounded for (r;)%_,
monotonically increasing. Then

> Ty : xJ’leBC,j — C is analytic for some C > 0,
> ifrie > 1 then Ty(X) ~ X.

[ZM20] J. Zech and Y. Marzouk, arXiv:2006.06994, 2020.
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Ansatz spaces for T

Where/how should we invest degrees of freedom to approximate T7?

Tli
T22

T3Z

Tdi

®- OO
® OO

® ©
®
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Ansatz spaces for T

Where/how should we invest degrees of freedom to approximate T7?

" @
~ @ @
“® © @

Ty: @ @ @
Pp,, = Span{Hle X' e /\E,k},

Aewi={v eNs : (L4 r) ™ [T (14 5) 7 > e}
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Convergence rates in finite dimension

Example: PDE inverse
problem

_od A
—div(aVu) = f > N=8m
a(s) = 1+ZJ‘_’:1 X ;(s) > T = posterior, i.e., Ty|{u(s)}

Reference and target on [—1, 1]¢:

Theorem (informal, [ZM20])

There exist (a priori) ansatz spaces Ae employing Ng = Zi:ﬂ/\&k] eN
degrees of freedom and T € Ag s.t.

- 1
> A of rational fcts:  dist( Tym, m) < exp(=BN)
- 1
» Ac of ReLU NNs:  dist(Tyn, ) S exp(—BNE™)
with dist € {Hellinger, TV, KL, W,}.

[ZM20] J. Zech and Y. Marzouk, arXiv:2006.06994, 2020.
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Approximation of triangular maps

Significance:

» Many recent ML approaches employ triangular maps (neural
autoregressive flows, sum-of-squares polynomial flow, neural spline
flow, etc.)

» Few results on universality; fewer still on convergence rates!

» Additionally: dimension-independent higher-order convergence rates
for certain inference problems in PDEs (see [ZM20])

Next steps: less smoothness, unbounded domains
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Topic #2: estimating monotone triangular maps

Many special cases of triangular maps are in practical use:

» Example: masked autoregressive flow [Papamakarios et al. 2017]

SH(xa, - xk) = pi(Xick) + xk exp(ak(Xi<k))

» Numerous others [Jaini et al. 2019, Wehenkel & Louppe 2019, etc ]
» Compose these transformations, interleaved with permutations:

> Universal approximators [Teshima et al. 2020] but no longer triangular
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Topic #2: estimating monotone triangular maps

Many special cases of triangular maps are in practical use:
» Example: masked autoregressive flow [Papamakarios et al. 2017]
SK(xa, - oxi) = p(Xick) + X exp(ok(Xick))
» Numerous others [Jaini et al. 2019, Wehenkel & Louppe 2019, etc ]

» Compose these transformations, interleaved with permutations:

> Universal approximators [Teshima et al. 2020] but no longer triangular

> |n general, maximum likelihood estimation in these models is a challenging
optimization problem:

M
. 1 . .
S €arg max — log S; ! n(x"), =N(,1,), X ~7
9 X 45_1 g5y n(x) n=N(01,)
= pullback
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Topic #2: estimating monotone triangular maps

Goal: seek a general representation of monotone triangular functions that
is “easy” to estimate. ..

Existing methods for enforcing monotonicity:
» Enforce 8xS*(x}.,) > 0 at finite training samples i =1,.. ., n

» Or enforce by construction: e.g., SOS polynomial flows [Jaini et al.
2019)

Xk
S*(x1.4) = ak(x<k) +/ br(x<k, t)?dt
0

Improved idea: Represent S via an invertible “rectifier”

Xk

S* (k) = Ruc(F)(xu) = F(xe, 0) + /O 9(OF (X 1)),

where g: R — Rsg is bijective & smooth and f: R — R is unconstrained

Marzouk et al. Bath/ICMS workshop 14 / 25



Parameterizing monotone maps

Rectification of f (1-D example)
For smooth f and bijective g: R — R+ (e.g., g(x) = log(1 + €¥))

S(x) =R(f)(x) := f(0) + /OX 9(0«f(t))dt,

—f(2)
— 0. f(x)
9(9:f(z))

05 0 05 5 2 2 15 -1 05 0 05
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Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

. 1 .
{s:gzlsn>0} Ex ES(XM)2 —log [0kS(x1:4)|| < mfln Tk 0 Ri(f)

Li(f
Jk(S), convex in S «(F)

» With this reparameterization, we lose convexity!

» When will the objective still have "nice” properties?
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Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

. 1 .
{s:gzlsn>0} Ex [QS(XM)2 —log |8k5(x1:k)|] & mfln Tk 0 Ri(f)

Li(f
Jk(S), convex in S «(F)

» With this reparameterization, we lose convexity!

» When will the objective still have "nice” properties?

One example: consider the space of functions
HEK(RK) = {f: RF = R s.t. [|F(x)]? + [0k f(x)|?dT(x) < 0o}

Some current results [BZM20]:

Let m(x) < Cn(ax) for some C < oo, a > 0, and 7n standard Gaussian.
Then, for smooth, bijective, and positive g, Lx : H kK - R is continuous
and bounded.
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Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

. 1 .
{s:gzlsn>0} Ex ES(XM)2 —log [0kS(x1:4)|| < mfln Tk 0 Ri(f)

Li(f
Jk(S), convex in S «(F)

» With this reparameterization, we lose convexity!

» When will the objective still have "nice” properties?

Consider the space of functions HL*(R¥) :=
{f: RF - Rst. [|f(X)]? + [0k (x)[2dm(x) < 00, Okf(x) > M > —oco}

Let m(x) < Cn(ax) for some 0 < C, o < oo and 7 standard Gaussian.
Then, for smooth, bijective, and positive g satisfying certain additional
assumptions, every local minimum of Ly : H}r'k — R is a global minimum.
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Numerical results: approximating monotone maps

» Mixture of Gaussians target density m
» Approximate objective as Ek using n = 50 samples

» Evaluate Zk along segments connecting random initial maps (t = 0)
to critical points of gradient-based optimizer (t = 1)

0.2 0.4 0.6 0.8 1

"o 0.2 0.4 0.6 0.8 1 0

9(x) = |09(1:L exp(x)) 9(x) = x? (cf. SOS poly flow)

Smooth objective with a single minimizer = fast and reliable training!
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Adaptive transport map (ATM) algorithm

Approach: Use any linear parameterization of f(x) (e.g., Hermite
functions, Hermite polynomials, wavelets) + greedy enrichment

Greedy adaptation

» Look for a sparse expansion f(x) = > 4cp Ca¥Pa(X)

» Add one element at a time to set of active multi-indices A¢

» Restrict A+ to be downward closed

» Search for new features in the reduced margin of A;

» Stopping the search (via cross-validation) tailors the map
representation to the sample size n

A 4 00 A, Banana Funnel Cosine Ring

BT O

2 ARM

1

0 <

ST (Rile
01234 ,
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Some ATM results
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Density estimation for state of chaotic Lorenz-96 system (d = 20) with
increasing sample size n:

» Greedy approach identifies sparsity in triangular map, which reflects
conditional independence in the target distribution [Spantini et al. 2018]
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Topic #3: single versus composed maps

Another approach to simulating 7yy_y-

Recall: target my x, reference nz, z,, and the triangular map

5.0 = |2

» S¥(y, ) pulls back nz, to x|y for any y
» S¥(y,x) pushes forward my x to 7z,
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Topic #3: single versus composed maps

Another approach to simulating 7yy_y-

Recall: target my x, reference nz, z,, and the triangular map

5.0 = |2

» S¥(y, ) pulls back nz, to x|y for any y
» S¥(y, x) pushes forward my x to 7z,

Nz,
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Topic #3: single versus composed maps

Another approach to simulating 7yy_y-

Recall: target my x, reference nz, z,, and the triangular map

5.0 = |2

» S¥(y, ) pulls back nz, to mx, for any y
» S¥(y,x) pushes forward Ty x to nz,

EAURDREEE) Wy
T(y, )

0z,
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Topic #3: single versus composed maps

Another approach to simulating 7yy_y-

Recall: target my x, reference nz, z,, and the triangular map

5.0 = |2

» S¥(y,-) pulls back nz, to x|y for any y
» S¥(y, x) pushes forward my x to 7z,

A “composed map” that pushes forward 7y x to Ty« Is

T(y.x) = S*(y*,-) 1 o S%(y,x)
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Performance of composed maps

Nonlinear filtering in the Lorenz-63 model:

» Error in filtering with linear maps: composed maps have smaller
RMSE on average

30 T 12 -
—— Composed map —§- Composed map
o5 | |—=Single map 10b —3§- Single map
--o0, --o0y
20} cz) st
A ~
S 15+ o 6
Z
L s o4t
10 Z
50 ) AP NP
Sl 0 '\i— 3 3 -
1000 2000 3000 10! 10°
Time t Number of training samples n

» When S is linear, the composed map T is exactly the update/analysis
step of the ensemble Kalman filter [Spantini, Baptista, M 2019].
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Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]
» Prior mx = U(—10, 10)
» Likelihood 7y, = 0.5N(x,1) + 0.5N(x,0.01)
» Approximate S% using degree 5 polynomials (x)y not in-class)
| 2

Compare samples from composed map T to single map S¥

[]Single map
[ Composed map
— True 7 (x[y")

— Approximate S°y

Takeaway: Posterior estimate from composed map has smaller bias
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Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]

Prior mx = U(—10, 10)

» Likelihood 7y, = 0.5N(x,1) + 0.5N(x,0.01)

» Approximate S% using degree 5 polynomials (mx|y not in-class)
>

v

Compare samples from composed map T to single map S%

y=0

[]Single map
[ Composed map
— True 7 (x|y")

2.5

o

— Approximate S°p

w(zly*)

Takeaway: Posterior estimate from composed map has smaller bias
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Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]

Prior mx = U(—10, 10)

» Likelihood 7y, = 0.5N(x,1) + 0.5N(x,0.01)

» Approximate S% using degree 5 polynomials (mx|y not in-class)
>

v

Compare samples from composed map T to single map S%

2.5

[ Single map
0 Composed map
— True 7(x[y")

o

— Approximate Sy

w(zly*)

Takeaway: Posterior estimate from composed map has smaller bias
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Analyzing the difference between 7 and S*

» The distribution 7= , of the “analysis” random variable ?(Y,X) is

T.y*

T, = S¥(y*, ) (gngY‘X)

Main idea: T uses information from neighboring true conditional densities

If the conditionals 7y, depend continuously on 'y, then

Dir(mxpy+ |77 ) < Dyt (mrxpy+|1S™ (v, ).

The inequality is strict when S% does not perfectly pull back 7 to my)y

Takeaway: Composed map will yield smaller bias than single map
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Analyzing the difference between 7 and S*

» The distribution 7= , of the “analysis” random variable ?(Y,X) is

T.y*

T3 e = S*(y", _)n/gx(y, i Txjy Ty (y)dy

Main idea: T uses information from neighboring true conditional densities

If the conditionals 7k, depend continuously ony, then

SY(y*,)n).

DKL("TX|y*||7T7—’y*) < DKL(”TX|y*

The inequality is strict when S does not perfectly pull back 1 to myy

Takeaway: Composed map will yield smaller bias than single map
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Exploiting structure in composed maps

Main result [BM21]

For any map Z = S¥(Y, X) such that Z 1L Y, the map T (y, x) will
sample exactly from the posterior density X y*

Is a different objective function then more suitable for finding 77

» Finding S¥ such that Z 1LY and Z ~ n = N(0, 1,) is one option
» Can we instead use a reference m that is closer to mxy?

» In practice this results in S being a simpler map
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Exploiting structure in composed maps

Main result [BM21]

For any map Z = S¥(Y, X) such that Z 1L Y, the map T (y, x) will
sample exactly from the posterior density X y*

Is a different objective function then more suitable for finding 77

» Finding S¥ such that Z 1LY and Z ~ n = N(0, 1,) is one option
» Can we instead use a reference m that is closer to mxy?

» In practice this results in S being a simpler map
Approach: Find S by minimizing mutual information:

(Z.Y) = Ey[Dki(mzyllmz)] = Ey[Dre(mxylIS*(y. )irz)]
= Ev[Dxi(mxyllms )]

Related work: [Tabak etal. 2020] based on optimal transport
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Conclusions

» Central idea: density estimation and conditional simulation using
triangular transport

» Broad range of applications, including data assimilation and other
instances of likelihood-free inference, as well as normalizing flows

» Approximation results for triangular maps

» Map estimation: optimization and adaptive parameterizations

» Composed map approach to conditional simulation
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Conclusions

» Central idea: density estimation and conditional simulation using
triangular transport

» Broad range of applications, including data assimilation and other
instances of likelihood-free inference, as well as normalizing flows

» Approximation results for triangular maps

» Map estimation: optimization and adaptive parameterizations

» Composed map approach to conditional simulation

» Additional ongoing work

Approximation of triangular maps in infinite dimensions (see [ZM20])
Statistical consistency of transport map density estimation

Low-rank structure in transport maps

Block-triangular maps and links to optimal transport (with R. Baptista,
B. Hosseini, N. Kovachki)

MM approaches to minimizing mutual information

>
>
>
>

v
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Conclusions

Thanks for your attention!
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Advantages of composed map

Bayesian linear regression model [Papamakarios & Murray 2016]

Prior mx = N (0, 14) for d =10

Likelihood myx = [T/2y N(x"uj, 02) for uj ~ N(0,1,) and m =6
Gaussian posterior 7y~ available in closed form

Evaluate convergence of posterior mean and covariance

v

v

v

10°

103 F=

g
g
= L 1074
2 =
3 =
g W\q 10°°
4 E
= =
2 10 u » —$-Composed map
5} —$- Composed map 10 —$—Single map
5 —4-Single map -- O(1/N)
- - O(1/N) -- 0(1/VN)
1071 L _ 1074 - .
10? 10° 10* 10° 10% 10% 10* 10°
Number of training samples, n Number of training samples, n

Takeaway: Posterior covariance estimate from composed map converges
more quickly
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Under the hood of the linear—Gaussian example

» Map S is allowed to be any affine function; posterior 7y« is in-class
for both single and composed maps

» Approximation error entirely due to variance of map estimate

» For composed map, approximate posterior covariance is a squared
perturbation of the true posterior covariance:

f;&’?p =Yy + A, where

-
~ =~ —1/2 S oo —-1/2
A= (zXYZY\l(ZYY - ZXYZYY/ > (ZXYZY\I(ZYY - ZXYZYY/ )
» Single map must instead re-capture all terms:
£ T — Exy Bl Ry

X|Y
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