Density estimation and conditional simulation using triangular transport

Youssef Marzouk¹ joint work with Ricardo Baptista,¹ Olivier Zahm,² and Jakob Zech³

> ¹Massachusetts Institute of Technology http://uqgroup.mit.edu

²INRIA and Université Grenoble Alpes

³Universität Heidelberg

Support from AFOSR, DOE, NSF, ONR

26 July 2021

Motivation: likelihood-free Bayesian inference

Setting: Generative model with intractable prior and likelihood

- Parameters $\mathbf{x} \sim \pi_{\mathbf{X}}$
- ► Data $\mathbf{y} \sim \pi_{\mathbf{Y}|\mathbf{X}}(\cdot|\mathbf{x})$
- We can easily simulate $(\mathbf{x}^i, \mathbf{y}^i) \sim \pi_{\mathbf{X}, \mathbf{Y}}$

Goal: Sample from the posterior $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ for any \mathbf{y}^*

Applications: Geophysical data assimilation (ensemble filtering), parameter inference in stochastic models

Motivation: likelihood-free Bayesian inference

Setting: Generative model with intractable prior and likelihood

- Parameters $\mathbf{x} \sim \pi_{\mathbf{X}}$
- ► Data $\mathbf{y} \sim \pi_{\mathbf{Y}|\mathbf{X}}(\cdot|\mathbf{x})$
- We can easily simulate $(\mathbf{x}^i, \mathbf{y}^i) \sim \pi_{\mathbf{X}, \mathbf{Y}}$

Goal: Estimate mutual information I(X; Y)

Application: Bayesian optimal experimental design

$$I(X; Y) = \mathbb{E}_{\mathbf{Y}} \left[\mathsf{D}_{\mathsf{KL}}(\pi_{\mathbf{X}|\mathbf{Y}} || \pi_{\mathbf{X}}) \right]$$

= $\mathbb{E}_{\mathbf{Y}, \mathbf{X}} \left[\log \pi(\mathbf{x}|\mathbf{y}) - \log \pi(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{Y}, \mathbf{X}} \left[\log \pi(\mathbf{y}|\mathbf{x}) - \log \pi(\mathbf{y}) \right]$

 \Rightarrow Need to estimate conditional and marginal densities over a range of values of ${\bf X}$ and ${\bf Y}$

Link these goals to transport

- A transport map S induces a deterministic coupling between a target distribution π and a reference distribution η
 - Generate cheap and independent samples: $\mathbf{z} \sim \eta \iff S^{-1}(\mathbf{z}) \sim \pi$
 - Estimate the target density: $\pi(\mathbf{x}) = S^{\sharp}\eta(\mathbf{x}) := \eta \circ S(\mathbf{x}) |\det \nabla S(\mathbf{x})|$

Monotone triangular transport maps

Specifically, consider the Knothe-Rosenblatt (KR) rearrangement

$$S(\mathbf{x}) = \begin{bmatrix} S^{1}(x_{1}) \\ S^{2}(x_{1}, x_{2}) \\ \vdots \\ S^{d}(x_{1}, x_{2}, \dots, x_{d}) \end{bmatrix}$$

- Monotone $(\partial_k S^k > 0)$ triangular map S satisfying $S_{\sharp}\pi = \eta$; exists and is unique under mild conditions on π and η
- **2** Easily invertible, with det $\nabla S(\mathbf{x})$ is tractable
- **③** Each component S^k characterizes one marginal conditional of π

$$\pi_{\mathbf{X}} = \pi_{X_1} \pi_{X_2 | X_1} \cdots \pi_{X_d | X_1, \dots, X_{d-1}}$$

• The KR map is a *limit* of optimal transport maps obtained under anisotropic quadratic cost, e.g., $c_t(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{d} t^{i-1} (x_i - z_i)^2$ as $t \to 0$ [Carlier et al. 2009]

- ► Given joint prior model $\pi_{\mathbf{Y},\mathbf{X}}$ for parameters $\mathbf{X} \in \mathbb{R}^n$, data $\mathbf{Y} \in \mathbb{R}^m$: seek the KR map S that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\eta_{\mathbf{Z}_1,\mathbf{Z}_2} := \mathcal{N}(0, \mathbf{I}_{m+n})$
- The KR map immediately has a block structure

$$S(\mathbf{y}, \mathbf{x}) = \left[egin{array}{c} S^{\mathcal{Y}}(\mathbf{y}) \ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{array}
ight],$$

which suggests two properties of the lower block:

$$S^{\mathcal{X}}$$
 pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_n)$
 $\boldsymbol{\xi} \mapsto S^{\mathcal{X}}(\mathbf{y}^*,\boldsymbol{\xi})$ pushes $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0,\mathbf{I}_n)$

- Given joint prior model π_{Y,X} for parameters X ∈ ℝⁿ, data Y ∈ ℝ^m: seek the KR map S that pushes π_{Y,X} to η_{Z1,Z2} := N(0, I_{m+n})
- ▶ The KR map immediately has a block structure

$$S(\mathbf{y}, \mathbf{x}) = \left[egin{array}{c} S^{\mathcal{Y}}(\mathbf{y}) \ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{array}
ight],$$

which suggests two properties of the lower block:

$$S^{\mathcal{X}}$$
 pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_n)$
 $\boldsymbol{\xi} \mapsto S^{\mathcal{X}}(\mathbf{y}^*,\boldsymbol{\xi})$ pushes $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0,\mathbf{I}_n)$

Approximate the conditional density:

$$\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*} = S^{\mathcal{X}}(\mathbf{y}^*, \cdot)^{\sharp} \mathcal{N}(0, \mathbf{I}_n)$$

- Given joint prior model π_{Y,X} for parameters X ∈ ℝⁿ, data Y ∈ ℝ^m: seek the KR map S that pushes π_{Y,X} to η_{Z1,Z2} := N(0, I_{m+n})
- The KR map immediately has a block structure

$$S(\mathbf{y}, \mathbf{x}) = \left[egin{array}{c} S^{\mathcal{Y}}(\mathbf{y}) \ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{array}
ight],$$

which suggests two properties of the lower block:

$$S^{\mathcal{X}}$$
 pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_n)$
 $\boldsymbol{\xi} \mapsto S^{\mathcal{X}}(\mathbf{y}^*,\boldsymbol{\xi})$ pushes $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0,\mathbf{I}_n)$

2 Sample the conditional distribution $\pi_{X|Y=y^*}$ with a *single* map:

Solve
$$S^{\mathcal{X}}(\mathbf{y}^*, \mathbf{x}^i) = \boldsymbol{\xi}^i$$
 for \mathbf{x}^i given $\boldsymbol{\xi}^i \sim \mathcal{N}(0, \mathbf{I}_n)$

- ► Given joint prior model $\pi_{\mathbf{Y},\mathbf{X}}$ for parameters $\mathbf{X} \in \mathbb{R}^n$, data $\mathbf{Y} \in \mathbb{R}^m$: seek the KR map *S* that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\eta_{\mathbf{Z}_1,\mathbf{Z}_2} := \mathcal{N}(0, \mathbf{I}_{m+n})$
- The KR map immediately has a block structure

$$S(\mathbf{y}, \mathbf{x}) = \left[egin{array}{c} S^{\mathcal{Y}}(\mathbf{y}) \ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{array}
ight],$$

which suggests two properties of the lower block:

$$S^{\mathcal{X}}$$
 pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\mathcal{N}(0,\mathbf{I}_n)$
 $\boldsymbol{\xi} \mapsto S^{\mathcal{X}}(\mathbf{y}^*,\boldsymbol{\xi})$ pushes $\pi_{\mathbf{X}|\mathbf{Y}=\mathbf{y}^*}$ to $\mathcal{N}(0,\mathbf{I}_n)$

Sample the conditional via a composed map T that pushes forward π_{Y,X} to π_{X|Y=y*}:

Evaluate
$$T(\mathbf{y}, \mathbf{x}) = S^{\mathcal{X}}(\mathbf{y}^*, \cdot)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$$

A general recipe

- Estimate the triangular map S (e.g., in some parameterized family) from (yⁱ, xⁱ)ⁿ_{i=1} ~ π_{Y,X}
- Use relevant parts of the estimated map to generate conditional samples or to approximate relevant conditional (or marginal) densities

- Estimate the triangular map S (e.g., in some parameterized family) from (yⁱ, xⁱ)ⁿ_{i=1} ~ π_{Y,X}
- Use relevant parts of the estimated map to generate conditional samples or to approximate relevant conditional (or marginal) densities

Many applications of this approach:

- Likelihood-free/simulation-based inference
- Optimal experimental design and MI estimation
- ► Nonlinear filtering (ensemble Kalman filter ⇔ linear S(y, x); see generalizations in [Spantini et al. arXiv:1907.00389])
- Triangular maps are the building block of autoregressive normalizing flows in machine learning...

Some underlying methodological questions:

- How to approximate triangular transport maps?
- Properties of the **optimization** problem arising in transport map estimation
- The unreasonable effectiveness of composed maps for conditional simulation

- Consider triangular maps on bounded domains (e.g., $[0, 1]^d$)
- Main results:
 - If both the reference and target densities f_η, f_π are analytic, the Knothe–Rosenblatt map T is analytic
 - ► *T* can be approximated with rational functions or deep ReLU networks, via constructions that guarantee *monotonicity* and *bijectivity*
 - Explicit a priori descriptions of ansatz spaces
 - Exponential convergence rates

Theorem (informal, [ZM20])

Let f_{η} , $f_{\pi} : \times_{j=1}^{d} \mathcal{B}_{r_j} \to \mathbb{C}$ be analytic and bounded for $(r_j)_{j=1}^{d}$ monotonically increasing. Then

- $T_k: \times_{i=1}^k \mathcal{B}_{Cr_i} \to \mathbb{C}$ is analytic for some C > 0,
- if $r_k \gg 1$ then $T_k(\mathbf{x}) \sim x_k$.

[ZM20] J. Zech and Y. Marzouk, arXiv:2006.06994, 2020.

Where/how should we invest degrees of freedom to approximate T?

Where/how should we invest degrees of freedom to approximate T?

$$\begin{split} \mathbb{P}_{\Lambda_{\varepsilon,k}} &\coloneqq \operatorname{span} \Big\{ \prod_{j=1}^{k} x_j^{\nu_j} \,:\, \boldsymbol{\nu} \in \Lambda_{\varepsilon,k} \Big\}, \\ \Lambda_{\varepsilon,k} &\coloneqq \Big\{ \boldsymbol{\nu} \in \mathbb{N}_0^k \,:\, (1+r_k)^{-\max\{1,\nu_k\}} \prod_{j=1}^{k-1} (1+r_j)^{-\nu_j} > \varepsilon \Big\} \end{split}$$

Marzouk et al.

Convergence rates in finite dimension

Theorem (informal, [ZM20])

There exist (a priori) ansatz spaces A_{ε} employing $N_{\varepsilon} = \sum_{k=1}^{d} |\Lambda_{\varepsilon,k}| \in \mathbb{N}$ degrees of freedom and $\tilde{T} \in A_{\varepsilon}$ s.t.

- A_{ε} of rational fcts: $\operatorname{dist}(\widetilde{T}_{\sharp}\eta,\pi) \lesssim \exp(-\beta N_{\varepsilon}^{\frac{1}{d}})$
- A_{ε} of **ReLU NNs**: $\operatorname{dist}(\widetilde{T}_{\sharp}\eta, \pi) \lesssim \exp(-\beta N_{\varepsilon}^{\frac{1}{d+1}})$

with dist \in {*Hellinger*, *TV*, *KL*, *W*_p}.

[ZM20] J. Zech and Y. Marzouk, arXiv:2006.06994, 2020.

Marzouk et al.

Significance:

- Many recent ML approaches employ triangular maps (neural autoregressive flows, sum-of-squares polynomial flow, neural spline flow, etc.)
- ► Few results on universality; fewer still on convergence rates!
- Additionally: *dimension-independent* higher-order convergence rates for certain inference problems in PDEs (see [ZM20])

Next steps: less smoothness, unbounded domains

Topic #2: estimating monotone triangular maps

Many *special* cases of triangular maps are in practical use:

Example: masked autoregressive flow [Papamakarios et al. 2017]

$$S^k(x_1,\ldots,x_k) = \mu_k(\mathbf{x}_{i< k}) + x_k \exp(\alpha_k(\mathbf{x}_{i< k}))$$

- ▶ Numerous others [Jaini et al. 2019, Wehenkel & Louppe 2019, etc.]
- *Compose* these transformations, interleaved with *permutations*:
 - Universal approximators [Teshima et al. 2020] but no longer triangular

Topic #2: estimating monotone triangular maps

Many *special* cases of triangular maps are in practical use:

Example: masked autoregressive flow [Papamakarios et al. 2017]

$$S^k(x_1,\ldots,x_k) = \mu_k(\mathbf{x}_{i< k}) + x_k \exp(\alpha_k(\mathbf{x}_{i< k}))$$

- ▶ Numerous others [Jaini et al. 2019, Wehenkel & Louppe 2019, etc.]
- Compose these transformations, interleaved with *permutations*:
 - Universal approximators [Teshima et al. 2020] but no longer triangular
- In general, maximum likelihood estimation in these models is a challenging optimization problem:

$$\widehat{S} \in \arg \max_{S \in \mathcal{S}_{\Delta}^{h}} \ \frac{1}{M} \sum_{i=1}^{M} \log \underbrace{\mathcal{S}_{\sharp}^{-1} \eta}_{\text{pullback}} (\mathbf{x}^{i}), \qquad \eta = \mathcal{N}(0, \mathbf{I}_{n}), \ \mathbf{x}^{i} \sim \pi$$

Topic #2: estimating monotone triangular maps

Goal: seek a *general* representation of monotone triangular functions that is "easy" to estimate...

Existing methods for enforcing monotonicity:

- Enforce $\partial_k S^k(\mathbf{x}_{1:k}^i) > 0$ at finite training samples i = 1, ..., n
- Or enforce by construction: e.g., SOS polynomial flows [Jaini et al. 2019]

$$S^{k}(\mathbf{x}_{1:k}) = a_{k}(\mathbf{x}_{< k}) + \int_{0}^{x_{k}} b_{k}(\mathbf{x}_{< k}, t)^{2} dt$$

Improved idea: Represent S^k via an **invertible** "rectifier"

$$S^k(\mathbf{x}_{1:k}) = \mathcal{R}_k(f)(\mathbf{x}_{1:k}) \coloneqq f(\mathbf{x}_{< k}, 0) + \int_0^{x_k} g(\partial_k f(\mathbf{x}_{< k}, t)) dt,$$

where $g: \mathbb{R} \to \mathbb{R}_{>0}$ is bijective & smooth and $f: \mathbb{R}^k \to \mathbb{R}$ is unconstrained

Rectification of f (1-D example)

For smooth f and bijective $g \colon \mathbb{R} \to \mathbb{R}_{>0}$ (e.g., $g(x) = \log(1 + e^x))$

$$S(x) = \mathcal{R}(f)(x) := f(0) + \int_0^x g(\partial_x f(t)) dt,$$

Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

$$\min_{\{S:\partial_k S>0\}} \underbrace{\mathbb{E}_{\pi} \left[\frac{1}{2} S(\mathbf{x}_{1:k})^2 - \log |\partial_k S(\mathbf{x}_{1:k})| \right]}_{\mathcal{J}_k(S), \text{ convex in } S} \Leftrightarrow \min_{f} \underbrace{\mathcal{J}_k \circ \mathcal{R}_k(f)}_{\mathcal{L}_k(f)}$$

- With this reparameterization, we lose convexity!
- When will the objective still have "nice" properties?

Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

$$\min_{\{S:\partial_k S>0\}} \underbrace{\mathbb{E}_{\pi} \left[\frac{1}{2} S(\mathbf{x}_{1:k})^2 - \log |\partial_k S(\mathbf{x}_{1:k})| \right]}_{\mathcal{J}_k(S), \text{ convex in } S} \Leftrightarrow \min_{f} \underbrace{\mathcal{J}_k \circ \mathcal{R}_k(f)}_{\mathcal{L}_k(f)}$$

- With this reparameterization, we lose convexity!
- When will the objective still have "nice" properties?

One example: consider the space of functions $H^{1,k}_{\pi}(\mathbb{R}^k) := \left\{ f \colon \mathbb{R}^k \to \mathbb{R} \text{ s.t. } \int |f(\mathbf{x})|^2 + |\partial_k f(\mathbf{x})|^2 d\pi(\mathbf{x}) < \infty \right\}$

Some current results [BZM20]:

Let $\pi(\mathbf{x}) \leq C\eta(\alpha \mathbf{x})$ for some $C < \infty$, $\alpha > 0$, and η standard Gaussian. Then, for smooth, bijective, and positive g, $\mathcal{L}_k : H^{1,k}_{\pi} \to \mathbb{R}$ is continuous and bounded.

Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

$$\min_{\{S:\partial_k S>0\}} \underbrace{\mathbb{E}_{\pi} \left[\frac{1}{2} S(\mathbf{x}_{1:k})^2 - \log |\partial_k S(\mathbf{x}_{1:k})| \right]}_{\mathcal{J}_k(S), \text{ convex in } S} \Leftrightarrow \min_{f} \underbrace{\mathcal{J}_k \circ \mathcal{R}_k(f)}_{\mathcal{L}_k(f)}$$

- With this reparameterization, we lose convexity!
- When will the objective still have "nice" properties?

Consider the space of functions $\tilde{H}^{1,k}_{\pi}(\mathbb{R}^k) \coloneqq \{f : \mathbb{R}^k \to \mathbb{R} \text{ s.t. } \int |f(\mathbf{x})|^2 + |\partial_k f(\mathbf{x})|^2 d\pi(\mathbf{x}) < \infty, \ \partial_k f(\mathbf{x}) \ge M > -\infty \}$

A conjecture:

Let $\pi(\mathbf{x}) \leq C\eta(\alpha \mathbf{x})$ for some $0 < C, \alpha < \infty$ and η standard Gaussian. Then, for smooth, bijective, and positive g satisfying certain additional assumptions, every local minimum of $\mathcal{L}_k : \tilde{H}_{\pi}^{1,k} \to \mathbb{R}$ is a global minimum.

Numerical results: approximating monotone maps

- Mixture of Gaussians target density π
- Approximate objective as $\widehat{\mathcal{L}}_k$ using n = 50 samples
- Evaluate $\hat{\mathcal{L}}_k$ along segments connecting random initial maps (t = 0) to critical points of gradient-based optimizer (t = 1)

Smooth objective with a single minimizer = fast and reliable training!

Adaptive transport map (ATM) algorithm

Approach: Use any linear parameterization of $f(\mathbf{x})$ (e.g., Hermite functions, Hermite polynomials, wavelets) + greedy enrichment

Greedy adaptation

- Look for a sparse expansion $f(\mathbf{x}) = \sum_{\alpha \in \Lambda} c_{\alpha} \psi_{\alpha}(\mathbf{x})$
- Add one element at a time to set of active multi-indices Λ_t
- Restrict Λ_t to be downward closed
- Search for new features in the reduced margin of Λ_t
- Stopping the search (via cross-validation) tailors the map representation to the sample size n

Density estimation for state of chaotic Lorenz-96 system (d = 20) with increasing sample size n:

 Greedy approach identifies sparsity in triangular map, which reflects conditional independence in the target distribution [Spantini et al. 2018]

Another approach to simulating $\pi_{X|Y=y^*}$

Recall: target $\pi_{\mathbf{Y},\mathbf{X}}$, reference $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, and the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

• $S^{\mathcal{X}}(\mathbf{y},\cdot)$ pulls back $\eta_{\mathbf{Z}_2}$ to $\pi_{\mathbf{X}|\mathbf{y}}$ for any \mathbf{y}

• $S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$ pushes forward $\pi_{\mathbf{Y}, \mathbf{X}}$ to $\eta_{\mathbf{Z}_2}$

Another approach to simulating $\pi_{X|Y=y^*}$

Recall: target $\pi_{\mathbf{Y},\mathbf{X}}$, reference $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, and the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

• $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pulls back $\eta_{\mathbf{Z}_2}$ to $\pi_{\mathbf{X}|\mathbf{y}}$ for any \mathbf{y}

• $S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$ pushes forward $\pi_{\mathbf{Y}, \mathbf{X}}$ to $\eta_{\mathbf{Z}_2}$

Another approach to simulating $\pi_{X|Y=y^*}$

Recall: target $\pi_{\mathbf{Y},\mathbf{X}}$, reference $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, and the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

• $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pulls back $\eta_{\mathbf{Z}_2}$ to $\pi_{\mathbf{X}|\mathbf{y}}$ for any \mathbf{y}

• $S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$ pushes forward $\pi_{\mathbf{Y}, \mathbf{X}}$ to $\eta_{\mathbf{Z}_2}$

Another approach to simulating $\pi_{X|Y=y^*}$

Recall: target $\pi_{\mathbf{Y},\mathbf{X}}$, reference $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, and the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

A "composed map" that pushes forward $\pi_{\mathbf{Y},\mathbf{X}}$ to $\pi_{\mathbf{X}|\mathbf{y}^*}$ is

$$T(\mathbf{y},\mathbf{x}) = S^{\mathcal{X}}(\mathbf{y}^*,\cdot)^{-1} \circ S^{\mathcal{X}}(\mathbf{y},\mathbf{x})$$

Performance of composed maps

Nonlinear filtering in the Lorenz-63 model:

 Error in filtering with linear maps: composed maps have smaller RMSE on average

▶ When *S* is *linear*, the composed map *T* is exactly the update/analysis step of the *ensemble Kalman filter* [Spantini, Baptista, M 2019].

Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]

- Prior $\pi_X = U(-10, 10)$
- Likelihood $\pi_{Y|x} = 0.5\mathcal{N}(x, 1) + 0.5\mathcal{N}(x, 0.01)$
- Approximate $S^{\mathcal{X}}$ using degree 5 polynomials ($\pi_{X|Y}$ not in-class)
- Compare samples from composed map T to single map $S^{\mathcal{X}}$

Takeaway: Posterior estimate from composed map has smaller bias

Bath/ICMS workshop

Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]

- Prior $\pi_X = U(-10, 10)$
- Likelihood $\pi_{Y|x} = 0.5\mathcal{N}(x, 1) + 0.5\mathcal{N}(x, 0.01)$
- Approximate $S^{\mathcal{X}}$ using degree 5 polynomials ($\pi_{X|Y}$ not in-class)
- Compare samples from composed map T to single map $S^{\mathcal{X}}$

Takeaway: Posterior estimate from composed map has smaller bias

Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]

- Prior $\pi_X = U(-10, 10)$
- Likelihood $\pi_{Y|x} = 0.5\mathcal{N}(x, 1) + 0.5\mathcal{N}(x, 0.01)$
- Approximate $S^{\mathcal{X}}$ using degree 5 polynomials ($\pi_{X|Y}$ not in-class)
- Compare samples from composed map T to single map $S^{\mathcal{X}}$

Takeaway: Posterior estimate from composed map has smaller bias

Analyzing the difference between T and $S^{\mathcal{X}}$

• The distribution $\pi_{\widehat{\mathcal{T}},\mathbf{y}^*}$ of the "analysis" random variable $\widehat{\mathcal{T}}(\mathbf{Y},\mathbf{X})$ is $\pi_{\widehat{\mathcal{T}},\mathbf{y}^*} = \widehat{S}^{\mathcal{X}}(\mathbf{y}^*,\cdot)^{\sharp} (\widehat{S}^{\mathcal{X}}_{\sharp}\pi_{\mathbf{Y},\mathbf{X}})$

Main idea: T uses information from neighboring *true* conditional densities

Theorem

If the conditionals $\pi_{X|y}$ depend continuously on y, then

$$D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{X}|\mathbf{y}^*}||\pi_{\widehat{\mathcal{T}},\mathbf{y}^*}) \leq D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{X}|\mathbf{y}^*}||\widehat{S}^{\mathcal{X}}(\mathbf{y}^*,\cdot)^{\sharp}\eta).$$

The inequality is strict when $\widehat{S}^{\mathcal{X}}$ does not perfectly pull back η to $\pi_{\mathbf{X}|\mathbf{Y}}$ **Takeaway**: Composed map will yield smaller bias than single map

Analyzing the difference between T and $S^{\mathcal{X}}$

• The distribution
$$\pi_{\widehat{\mathcal{T}},\mathbf{y}^*}$$
 of the "analysis" random variable $\widehat{\mathcal{T}}(\mathbf{Y},\mathbf{X})$ is
$$\pi_{\widehat{\mathcal{T}},\mathbf{y}^*} = \widehat{S}^{\mathcal{X}}(\mathbf{y}^*,\cdot)^{\sharp} \int \widehat{S}^{\mathcal{X}}(\mathbf{y},\cdot)_{\sharp} \pi_{\mathbf{X}|\mathbf{y}} \pi_{\mathbf{Y}}(\mathbf{y}) \mathrm{d}\mathbf{y}$$

Main idea: T uses information from neighboring *true* conditional densities

Theorem

If the conditionals $\pi_{\mathbf{X}|\mathbf{y}}$ depend continuously on \mathbf{y} , then

$$D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{X}|\mathbf{y}^*}||\pi_{\widehat{\mathcal{T}},\mathbf{y}^*}) \leq D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{X}|\mathbf{y}^*}||\widehat{S}^{\mathcal{X}}(\mathbf{y}^*,\cdot)^{\sharp}\eta).$$

The inequality is strict when $\hat{S}^{\mathcal{X}}$ does not perfectly pull back η to $\pi_{X|Y}$ **Takeaway**: Composed map will yield smaller bias than single map

Main result [BM21]

For any map $\mathbf{Z} = S^{\mathcal{X}}(\mathbf{Y}, \mathbf{X})$ such that $\mathbf{Z} \perp \mathbf{Y}$, the map $T(\mathbf{y}, \mathbf{x})$ will sample exactly from the posterior density $\pi_{\mathbf{X}|\mathbf{y}^*}$

Is a **different objective function** then more suitable for finding T?

- Finding $S^{\mathcal{X}}$ such that $\mathbf{Z} \perp \mathbf{Y}$ and $\mathbf{Z} \sim \eta = \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ is one option
- Can we instead use a reference η that is closer to $\pi_{X|Y}$?
- In practice this results in $S^{\mathcal{X}}$ being a simpler map

Main result [BM21]

For any map $\mathbf{Z} = S^{\mathcal{X}}(\mathbf{Y}, \mathbf{X})$ such that $\mathbf{Z} \perp \mathbf{Y}$, the map $T(\mathbf{y}, \mathbf{x})$ will sample exactly from the posterior density $\pi_{\mathbf{X}|\mathbf{y}^*}$

Is a **different objective function** then more suitable for finding T?

- Finding $S^{\mathcal{X}}$ such that $\mathbf{Z} \perp \mathbf{Y}$ and $\mathbf{Z} \sim \eta = \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ is one option
- Can we instead use a reference η that is closer to $\pi_{X|Y}$?
- In practice this results in $S^{\mathcal{X}}$ being a simpler map

Approach: Find $S^{\mathcal{X}}$ by minimizing mutual information:

$$\mathcal{I}(\mathbf{Z}, \mathbf{Y}) = \mathbb{E}_{\mathbf{Y}}[D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{Z}|\mathbf{y}}||\pi_{\mathbf{Z}})] = \mathbb{E}_{\mathbf{Y}}[D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{X}|\mathbf{y}}||S^{\mathcal{X}}(\mathbf{y}, \cdot)^{\sharp}\pi_{\mathbf{Z}})]$$
$$= \mathbb{E}_{\mathbf{Y}}[D_{\mathcal{K}\mathcal{L}}(\pi_{\mathbf{X}|\mathbf{y}}||\pi_{\widehat{\mathcal{T}},\mathbf{y}^{*}})]$$

Related work: [Tabak et al. 2020] based on optimal transport

- Central idea: density estimation and conditional simulation using triangular transport
 - Broad range of applications, including *data assimilation* and other instances of *likelihood-free inference*, as well as *normalizing flows*
 - Approximation results for triangular maps
 - Map estimation: optimization and adaptive parameterizations
 - Composed map approach to conditional simulation

- Central idea: density estimation and conditional simulation using triangular transport
 - Broad range of applications, including *data assimilation* and other instances of *likelihood-free inference*, as well as *normalizing flows*
 - Approximation results for triangular maps
 - Map estimation: optimization and adaptive parameterizations
 - Composed map approach to conditional simulation

Additional ongoing work

- Approximation of triangular maps in *infinite dimensions* (see [ZM20])
- Statistical consistency of transport map density estimation
- Low-rank structure in transport maps
- Block-triangular maps and links to optimal transport (with R. Baptista, B. Hosseini, N. Kovachki)
- MM approaches to minimizing mutual information

Thanks for your attention!

References

- R. Baptista, Y. Marzouk, R. Morrison, O. Zahm. "Learning non-Gaussian graphical models via Hessian scores and triangular transport." arXiv:2101:03093, 2021.
- J. Zech, Y. Marzouk. "Sparse approximation of triangular transports on bounded domains." arXiv:2006.06994, 2021.
- M. Brennan, D. Bigoni, O. Zahm, A. Spantini, Y. Marzouk. "Greedy inference with structure-exploiting lazy maps." *NeurIPS 2020*, arXiv:1906.00031.
- R. Baptista, O. Zahm, Y. Marzouk. "An adaptive transport framework for joint and conditional density estimation." arXiv:2009.10303, 2020.
- N. Kovachki, R. Baptista, B. Hosseini and Y. Marzouk, "Conditional sampling with monotone GANs," arXiv:2006.06755, 2020.
- A. Spantini, R. Baptista, Y. Marzouk. "Coupling techniques for nonlinear ensemble filtering." arXiv:1907.00389, 2020.
- O. Zahm, T. Cui, K. Law, A. Spantini, Y. Marzouk. "Certified dimension reduction in nonlinear Bayesian inverse problems." arXiv:1807.03712, 2021.
- A. Spantini, D. Bigoni, Y. Marzouk. "Inference via low-dimensional couplings." JMLR 19(66): 1–71, 2018.

Advantages of composed map

Bayesian linear regression model [Papamakarios & Murray 2016]

• Prior
$$\pi_{\mathbf{X}} = \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$$
 for $d = 10$

- Likelihood $\pi_{\mathbf{Y}|\mathbf{X}} = \prod_{i=1}^{m} \mathcal{N}(\mathbf{x}^{\mathsf{T}} \mathbf{u}_i, \sigma^2)$ for $\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ and m = 6
- Gaussian posterior $\pi_{\mathbf{X}|\mathbf{y}^*}$ available in closed form
- Evaluate convergence of posterior mean and covariance

Takeaway: Posterior covariance estimate from composed map converges more quickly

Marzouk et al.

Bath/ICMS workshop

- ► Map S is allowed to be any affine function; posterior π_{X|y*} is *in-class* for both single and composed maps
 - Approximation error entirely due to variance of map estimate
- ► For composed map, approximate posterior covariance is a *squared* perturbation of the *true* posterior covariance:

$$\begin{split} \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}|\boldsymbol{Y}}^{\text{comp}} &= \boldsymbol{\Sigma}_{\boldsymbol{X}|\boldsymbol{Y}} + \boldsymbol{\Delta}, \text{ where} \\ \boldsymbol{\Delta} &= \left(\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}\boldsymbol{Y}} \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} - \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}}^{-1/2}\right) \left(\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}\boldsymbol{Y}} \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} - \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}}^{-1/2}\right)^{\top} \end{split}$$

Single map must instead re-capture all terms:

$$\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}|\boldsymbol{Y}}^{sing} = \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}\boldsymbol{X}} - \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}\boldsymbol{Y}} \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}\boldsymbol{Y}}^\top$$