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Motivation: likelihood-free Bayesian inference

Setting: Generative model with intractable prior and likelihood
I Parameters x ⇠ ⇡

X

I Data y ⇠ ⇡
Y|X(·|x)

I We can easily simulate (xi , yi) ⇠ ⇡
X,Y

Goal: Sample from the posterior ⇡
X|Y=y

⇤ for any y

⇤

Applications: Geophysical data assimilation (ensemble filtering),
parameter inference in stochastic models

Lorenz-63 system Numerical weather prediction
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Motivation: likelihood-free Bayesian inference

Setting: Generative model with intractable prior and likelihood
I Parameters x ⇠ ⇡

X

I Data y ⇠ ⇡
Y|X(·|x)

I We can easily simulate (xi , yi) ⇠ ⇡
X,Y

Goal: Estimate mutual information I (X ;Y )

Application: Bayesian optimal experimental design

I (X ;Y ) = EY
⇥

DKL(⇡
X|Y ||⇡X

)
⇤

= EY ,X [log⇡(x|y)� log⇡(x)] = EY ,X [log⇡(y |x)� log⇡(y)]

) Need to estimate conditional and marginal densities over a range of
values of X and Y
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Link these goals to transport

I A transport map S induces a deterministic coupling between a
target distribution ⇡ and a reference distribution ⌘
I Generate cheap and independent samples: z ⇠ ⌘ , S�1(z) ⇠ ⇡
I Estimate the target density: ⇡(x) = S]⌘(x) := ⌘ � S(x) |detrS(x)|

densities samples

Marzouk et al. Bath/ICMS workshop 3 / 25



Monotone triangular transport maps

Specifically, consider the Knothe–Rosenblatt (KR) rearrangement

S(x) =

2

6

6

6

4

S1(x1)
S2(x1, x2)

...
Sd(x1, x2, . . . , x

d

)

3

7

7

7

5

1 Monotone (@
k

Sk > 0) triangular map S satisfying S]⇡ = ⌘; exists
and is unique under mild conditions on ⇡ and ⌘

2 Easily invertible, with detrS(x) is tractable
3 Each component Sk characterizes one marginal conditional of ⇡

⇡
X

= ⇡
X1⇡X2|X1 · · ·⇡X

d

|X1,...,X
d�1

4 The KR map is a limit of optimal transport maps obtained under
anisotropic quadratic cost, e.g., c

t

(x, z) =
P

d

i=1 t i�1(x
i

� z
i

)2 as
t ! 0 [Carlier et al. 2009]
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Conditional density estimation and simulation

I Given joint prior model ⇡
Y,X for parameters X 2 Rn, data Y 2 Rm:

seek the KR map S that pushes ⇡
Y,X to ⌘

Z1,Z2 := N (0, I
m+n

)

I The KR map immediately has a block structure

S(y, x) =

"

SY(y)

SX (y, x)

#

,

which suggests two properties of the lower block:

SX pushes ⇡
Y,X to N (0, I

n

)

⇠ 7! SX (y⇤, ⇠) pushes ⇡
X|Y=y

⇤ to N (0, I
n

)
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Y,X for parameters X 2 Rn, data Y 2 Rm:

seek the KR map S that pushes ⇡
Y,X to ⌘

Z1,Z2 := N (0, I
m+n

)

I The KR map immediately has a block structure

S(y, x) =

"

SY(y)

SX (y, x)

#

,

which suggests two properties of the lower block:

SX pushes ⇡
Y,X to N (0, I

n

)

⇠ 7! SX (y⇤, ⇠) pushes ⇡
X|Y=y

⇤ to N (0, I
n

)

1 Approximate the conditional density:

⇡
X|Y=y

⇤ = SX (y⇤, ·)]N (0, I
n

)
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Conditional density estimation and simulation

I Given joint prior model ⇡
Y,X for parameters X 2 Rn, data Y 2 Rm:

seek the KR map S that pushes ⇡
Y,X to ⌘

Z1,Z2 := N (0, I
m+n

)

I The KR map immediately has a block structure

S(y, x) =

"

SY(y)

SX (y, x)

#

,

which suggests two properties of the lower block:

SX pushes ⇡
Y,X to N (0, I

n

)

⇠ 7! SX (y⇤, ⇠) pushes ⇡
X|Y=y

⇤ to N (0, I
n

)

2

Sample the conditional distribution ⇡
X|Y=y

⇤ with a single map:

Solve SX (y⇤, xi) = ⇠i for x

i given ⇠i ⇠ N (0, I
n

)

Marzouk et al. Bath/ICMS workshop 5 / 25



Conditional density estimation and simulation

I Given joint prior model ⇡
Y,X for parameters X 2 Rn, data Y 2 Rm:

seek the KR map S that pushes ⇡
Y,X to ⌘

Z1,Z2 := N (0, I
m+n

)

I The KR map immediately has a block structure

S(y, x) =

"

SY(y)

SX (y, x)

#

,

which suggests two properties of the lower block:

SX pushes ⇡
Y,X to N (0, I

n

)

⇠ 7! SX (y⇤, ⇠) pushes ⇡
X|Y=y

⇤ to N (0, I
n

)

3

Sample the conditional via a composed map T that pushes forward
⇡

Y,X to ⇡
X|Y=y

⇤ :

Evaluate T (y, x) = SX (y⇤, ·)�1 � SX (y, x)
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A general recipe

I
Estimate the triangular map S (e.g., in some parameterized family)
from (yi , xi)n

i=1 ⇠ ⇡Y,X

I Use relevant parts of the estimated map to generate conditional
samples or to approximate relevant conditional (or marginal) densities

Many applications of this approach:
I Likelihood-free/simulation-based inference
I Optimal experimental design and MI estimation
I Nonlinear filtering (ensemble Kalman filter , linear S(y, x); see

generalizations in [Spantini et al. arXiv:1907.00389])
I Triangular maps are the building block of autoregressive normalizing

flows in machine learning. . .

Marzouk et al. Bath/ICMS workshop 6 / 25



A general recipe

I
Estimate the triangular map S (e.g., in some parameterized family)
from (yi , xi)n

i=1 ⇠ ⇡Y,X

I Use relevant parts of the estimated map to generate conditional
samples or to approximate relevant conditional (or marginal) densities

Many applications of this approach:
I Likelihood-free/simulation-based inference
I Optimal experimental design and MI estimation
I Nonlinear filtering (ensemble Kalman filter , linear S(y, x); see

generalizations in [Spantini et al. arXiv:1907.00389])
I Triangular maps are the building block of autoregressive normalizing

flows in machine learning. . .

Marzouk et al. Bath/ICMS workshop 6 / 25



Plan for the rest of talk

Some underlying methodological questions:

1 How to approximate triangular transport maps?

2 Properties of the optimization problem arising in transport map
estimation

3 The unreasonable effectiveness of composed maps for conditional
simulation
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Topic #1: approximation of triangular maps

I Consider triangular maps on bounded domains (e.g., [0, 1]d)

I
Main results:

I If both the reference and target densities f⌘, f⇡ are analytic, the
Knothe–Rosenblatt map T is analytic

I T can be approximated with rational functions or deep ReLU networks,
via constructions that guarantee monotonicity and bijectivity

I Explicit a priori descriptions of ansatz spaces
I Exponential convergence rates
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Regularity of T

r

�1 1
B

r

:= ✓ C

{z 2 C : dist(z , [�1, 1]) < r}

Theorem (informal, [ZM20])

Let f⌘, f⇡ : ⇥d

j=1Br

j

! C be analytic and bounded for (r
j

)d
j=1

monotonically increasing. Then
I T

k

: ⇥k

j=1BCr

j

! C is analytic for some C > 0,
I if r

k

� 1 then T
k

(x) ⇠ x
k

.

[ZM20] J. Zech and Y. Marzouk, arXiv:2006.06994, 2020.
Marzouk et al. Bath/ICMS workshop 9 / 25



Ansatz spaces for T

Where/how should we invest degrees of freedom to approximate T?

...
. . .

T1:

T2:

T3:

T

d

:

x1

x1

x1

x1

x2

x2

x2

x3

x3 x

d

P⇤",k := span
n

Q

k

j=1 x⌫j
j

: ⌫ 2 ⇤",k
o

,

⇤",k :=
n

⌫ 2 Nk

0 : (1 + r
k

)�max{1,⌫
k

}Qk�1
j=1 (1 + r

j

)�⌫j > "
o
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Convergence rates in finite dimension

Example: PDE inverse

problem

�div(aru) = f

a(s) = 1+
P

d

j=1 x
j

 
j

(s)

Reference and target on [�1, 1]d :

I ⌘ = ⌦d

j=1
�
2

I ⇡ = posterior, i.e., ⇡
x |{u(s

i

)}

Theorem (informal, [ZM20])

There exist (a priori) ansatz spaces A" employing N" =
P

d

k=1|⇤",k | 2 N
degrees of freedom and eT 2 A" s.t.

I A" of rational fcts: dist(eT]⌘,⇡) . exp(��N
1
d

" )

I A" of ReLU NNs: dist(eT]⌘,⇡) . exp(��N
1

d+1
" )

with dist 2 {Hellinger,TV,KL,W
p

}.

[ZM20] J. Zech and Y. Marzouk, arXiv:2006.06994, 2020.
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Approximation of triangular maps

Significance:

I Many recent ML approaches employ triangular maps (neural
autoregressive flows, sum-of-squares polynomial flow, neural spline
flow, etc.)

I Few results on universality; fewer still on convergence rates!
I Additionally: dimension-independent higher-order convergence rates

for certain inference problems in PDEs (see [ZM20])

Next steps: less smoothness, unbounded domains
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Topic #2: estimating monotone triangular maps

Many special cases of triangular maps are in practical use:

I Example: masked autoregressive flow [Papamakarios et al. 2017]

Sk(x1, . . . , xk

) = µ
k

(x
i<k

) + x
k

exp(↵
k

(x
i<k

))

I
Numerous others [Jaini et al. 2019, Wehenkel & Louppe 2019, etc.]

I Compose these transformations, interleaved with permutations:

I Universal approximators [Teshima et al. 2020] but no longer triangular

I In general, maximum likelihood estimation in these models is a challenging

optimization problem:

bS 2 arg max
S2Sh

4

1
M

M

X

i=1

log S�1
] ⌘

| {z }

pullback

(xi ), ⌘ = N (0, I
n

), x

i ⇠ ⇡
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Topic #2: estimating monotone triangular maps

Goal: seek a general representation of monotone triangular functions that
is “easy” to estimate. . .

Existing methods for enforcing monotonicity:
I Enforce @

k

Sk(xi

1:k) > 0 at finite training samples i = 1, . . . , n
I Or enforce by construction: e.g., SOS polynomial flows [Jaini et al.

2019]

Sk(x1:k) = a
k

(x<k

) +

Z

x

k

0
b

k

(x<k

, t)2dt

Improved idea: Represent Sk via an invertible “rectifier”

Sk(x1:k) = Rk

(f )(x1:k) := f (x<k

, 0) +
Z

x

k

0
g(@

k

f (x<k

, t))dt,

where g : R! R>0 is bijective & smooth and f : Rk ! R is unconstrained
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Parameterizing monotone maps

Rectification of f (1-D example)

For smooth f and bijective g : R! R>0 (e.g., g(x) = log(1 + ex ))

S(x) = R(f )(x) := f (0) +
Z

x

0
g(@

x

f (t))dt,

R(f )

R�1(S)

Marzouk et al. Bath/ICMS workshop 15 / 25



Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

min
{S:@

k

S>0}
E⇡



1
2
S(x1:k)

2 � log |@
k

S(x1:k)|
�

| {z }

J
k

(S), convex in S

, min
f

J
k

�R
k

(f )
| {z }

L
k

(f )

I With this reparameterization, we lose convexity!
I When will the objective still have “nice” properties?
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Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

min
{S:@

k

S>0}
E⇡



1
2
S(x1:k)

2 � log |@
k

S(x1:k)|
�

| {z }

J
k

(S), convex in S

, min
f

J
k

�R
k

(f )
| {z }

L
k

(f )

I With this reparameterization, we lose convexity!
I When will the objective still have “nice” properties?

One example: consider the space of functions
H1,k
⇡ (Rk) :=

�

f : Rk ! R s.t.
R

|f (x)|2 + |@
k

f (x)|2d⇡(x) <1
 

Some current results [BZM20]:

Let ⇡(x)  C⌘(↵x) for some C <1, ↵ > 0, and ⌘ standard Gaussian.
Then, for smooth, bijective, and positive g, L

k

: H1,k
⇡ ! R is continuous

and bounded.
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Approximating monotone maps

Convert constrained minimization to an unconstrained problem:

min
{S:@

k

S>0}
E⇡



1
2
S(x1:k)

2 � log |@
k

S(x1:k)|
�

| {z }

J
k

(S), convex in S

, min
f

J
k

�R
k

(f )
| {z }

L
k

(f )

I With this reparameterization, we lose convexity!
I When will the objective still have “nice” properties?

Consider the space of functions H̃1,k
⇡ (Rk) :=

�

f : Rk ! R s.t.
R

|f (x)|2 + |@
k

f (x)|2d⇡(x) <1, @
k

f (x) � M > �1
 

A conjecture:

Let ⇡(x)  C⌘(↵x) for some 0 < C ,↵ <1 and ⌘ standard Gaussian.
Then, for smooth, bijective, and positive g satisfying certain additional
assumptions, every local minimum of L

k

: H̃1,k
⇡ ! R is a global minimum.
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Numerical results: approximating monotone maps

I Mixture of Gaussians target density ⇡
I Approximate objective as bL

k

using n = 50 samples
I Evaluate bL

k

along segments connecting random initial maps (t = 0)
to critical points of gradient-based optimizer (t = 1)

g(x) = log(1 + exp(x)) g(x) = x2 (cf. SOS poly flow)

Smooth objective with a single minimizer = fast and reliable training!
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Adaptive transport map (ATM) algorithm

Approach: Use any linear parameterization of f (x) (e.g., Hermite
functions, Hermite polynomials, wavelets) + greedy enrichment

Greedy adaptation

I Look for a sparse expansion f (x) =
P

↵2⇤ c↵ ↵(x)
I Add one element at a time to set of active multi-indices ⇤

t

I Restrict ⇤
t

to be downward closed
I Search for new features in the reduced margin of ⇤

t

I Stopping the search (via cross-validation) tailors the map
representation to the sample size n
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Some ATM results

1

2

3

4

5

6

7

8

9

Density estimation for state of chaotic Lorenz-96 system (d = 20) with
increasing sample size n:
I Greedy approach identifies sparsity in triangular map, which reflects

conditional independence in the target distribution [Spantini et al. 2018]

Marzouk et al. Bath/ICMS workshop 19 / 25



Topic #3: single versus composed maps

Another approach to simulating ⇡
X|Y=y

⇤

Recall: target ⇡
Y,X, reference ⌘

Z1,Z2 , and the triangular map

S(y, x) =


SY(y)
SX (y, x)

�

I SX (y, ·) pulls back ⌘
Z2 to ⇡

X|y for any y

I SX (y, x) pushes forward ⇡
Y,X to ⌘

Z2

πX|Y =y∗

ηZ2

SX (y∗, ·)−1
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Topic #3: single versus composed maps

Another approach to simulating ⇡
X|Y=y

⇤

Recall: target ⇡
Y,X, reference ⌘

Z1,Z2 , and the triangular map

S(y, x) =


SY(y)
SX (y, x)

�

I SX (y, ·) pulls back ⌘
Z2 to ⇡

X|y for any y

I SX (y, x) pushes forward ⇡
Y,X to ⌘

Z2

A “composed map” that pushes forward ⇡
Y,X to ⇡

X|y⇤ is

T (y, x) = SX (y⇤, ·)�1 � SX (y, x)
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Performance of composed maps

Nonlinear filtering in the Lorenz-63 model:

I Error in filtering with linear maps: composed maps have smaller
RMSE on average

I When S is linear, the composed map T is exactly the update/analysis
step of the ensemble Kalman filter [Spantini, Baptista, M 2019].
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Advantages of composed maps

Gaussian mixture [Sisson et al. 2007]

I Prior ⇡
X

= U(�10, 10)
I Likelihood ⇡

Y |x = 0.5N (x , 1) + 0.5N (x , 0.01)
I Approximate SX using degree 5 polynomials (⇡

X|Y not in-class)
I Compare samples from composed map T to single map SX

Takeaway: Posterior estimate from composed map has smaller bias
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Analyzing the difference between T and SX

I The distribution ⇡b
T ,y⇤ of the “analysis” random variable bT (Y,X) is

⇡b
T ,y⇤ =

bSX (y⇤, ·)]
⇣

bSX] ⇡Y,X

⌘

Main idea: T uses information from neighboring true conditional densities

Theorem
If the conditionals ⇡

X|y depend continuously on y, then

D
KL

(⇡
X|y⇤ ||⇡b

T ,y⇤)  D
KL

(⇡
X|y⇤ ||bSX (y⇤, ·)]⌘).

The inequality is strict when bSX does not perfectly pull back ⌘ to ⇡
X|Y

Takeaway: Composed map will yield smaller bias than single map
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Exploiting structure in composed maps

Main result [BM21]

For any map Z = SX (Y,X) such that Z ?? Y, the map T (y, x) will
sample exactly from the posterior density ⇡

X|y⇤

Is a different objective function then more suitable for finding T?

I Finding SX such that Z ?? Y and Z ⇠ ⌘ = N (0, I
d

) is one option
I Can we instead use a reference ⌘ that is closer to ⇡

X|Y?
I In practice this results in SX being a simpler map

Approach: Find SX by minimizing mutual information:

I (Z,Y) = E
Y

[D
KL

(⇡
Z|y||⇡Z

)] = E
Y

[D
KL

(⇡
X|y||SX (y, ·)]⇡Z

)]

= E
Y

[D
KL

(⇡
X|y||⇡b

T ,y⇤)]

Related work: [Tabak et al. 2020] based on optimal transport
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sample exactly from the posterior density ⇡

X|y⇤

Is a different objective function then more suitable for finding T?

I Finding SX such that Z ?? Y and Z ⇠ ⌘ = N (0, I
d

) is one option
I Can we instead use a reference ⌘ that is closer to ⇡

X|Y?
I In practice this results in SX being a simpler map

Approach: Find SX by minimizing mutual information:

I (Z,Y) = E
Y

[D
KL
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Y
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KL
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X|y||SX (y, ·)]⇡Z

)]

= E
Y

[D
KL

(⇡
X|y||⇡b

T ,y⇤)]

Related work: [Tabak et al. 2020] based on optimal transport

Marzouk et al. Bath/ICMS workshop 24 / 25



Conclusions

I
Central idea: density estimation and conditional simulation using
triangular transport
I Broad range of applications, including data assimilation and other

instances of likelihood-free inference, as well as normalizing flows
I Approximation results for triangular maps
I Map estimation: optimization and adaptive parameterizations
I Composed map approach to conditional simulation

I
Additional ongoing work

I Approximation of triangular maps in infinite dimensions (see [ZM20])
I Statistical consistency of transport map density estimation
I Low-rank structure in transport maps
I Block-triangular maps and links to optimal transport (with R. Baptista,

B. Hosseini, N. Kovachki)
I MM approaches to minimizing mutual information
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Conclusions

Thanks for your attention!
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Advantages of composed map

Bayesian linear regression model [Papamakarios & Murray 2016]
I Prior ⇡

X

= N (0, I
d

) for d = 10
I Likelihood ⇡

Y|X =
Q

m

i=1N (xT

u

i

,�2) for u

i

⇠ N (0, I
m

) and m = 6
I Gaussian posterior ⇡

X|y⇤ available in closed form
I Evaluate convergence of posterior mean and covariance

Takeaway: Posterior covariance estimate from composed map converges
more quickly
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Under the hood of the linear–Gaussian example

I Map S is allowed to be any affine function; posterior ⇡
X|y⇤ is in-class

for both single and composed maps
I Approximation error entirely due to variance of map estimate

I For composed map, approximate posterior covariance is a squared
perturbation of the true posterior covariance:

b⌃comp
X|Y = ⌃

X|Y +�, where

� =
⇣

b⌃
XY

b⌃�1
YY

⌃
YY

� ⌃
XY

⌃�1/2
YY

⌘⇣

b⌃
XY

b⌃�1
YY

⌃
YY

� ⌃
XY

⌃�1/2
YY

⌘>

I Single map must instead re-capture all terms:

b⌃sing
X|Y = b⌃

XX

� b⌃
XY

b⌃�1
YY

b⌃>
XY
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